Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(14): 6564-6570, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38531079

RESUMO

Extensive research has been dedicated to exploring the potential applications of organic-inorganic hybrid metal halides in optoelectronics. This study presents findings on three metal halides based on phenylbutanammonium (PBA). Specifically, (PBA)2MnBr4(H2O)2 and (PBA)2Sn(IV)Cl6 exhibit zero-dimensional structures with P21/c and Pnma space groups, respectively, while (PBA)2Sn(II)Br4 features a two-dimensional structure with P1̅ space group. Under UV excitation, (PBA)2MnBr4(H2O)2 exhibits double emission arising from the 4T1 → 6A1 transitions of Mn2+ in two distinct coordination environments. The emission spectrum of (PBA)2SnCl6 aligns with that of PBACl, suggesting that the luminescence originates from the organic component. The yellow emission of (PBA)2SnBr4 is attributed to the self-trapped excitons. This study introduces the PBA series of compounds, revealing that varying metal ions and halogen combinations can adjust the structural dimensions and influence optical properties. The insights gained from this work serve as a guide for the preparation of efficient white light-emitting diodes.

2.
Inorg Chem ; 63(23): 10705-10712, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38809172

RESUMO

Organic-inorganic hybrid halides have gained attention for their ease of processing and remarkable optoelectronic properties. However, the relationship between the structure and optical properties requires further exploration. In this study, the butyltrimethylammonium cation (C7H18N+) was chosen, and seven compounds were synthesized: (C7H18N)3Sb2X9 (X = Cl, Br), (C7H18N)3Bi2X9 (X = Cl, Br, I), and (C7H18N)(C2H8N)MBr5 (M = Sb, Bi). Crystals with a single organic cation exhibit a zero-dimensional structure, while the introduction of dimethylamine ions increases the crystal dimensionality from zero-dimensional (C7H18N)3Sb2Br9 to one-dimensional (C7H18N)(C2H8N)SbBr5. Under 372 nm excitation, (C7H18N)3Sb2Cl9 showed broad orange-red single-band emission with a high photoluminescence quantum yield of 88.4% and an external quantum efficiency of up to 56.9%. A white light-emitting diode based on (C7H18N)3Sb2Cl9 achieved a high color rendering index of 96.3. Moreover, dual-band emission was observed in (C7H18N)3Sb2Cl9 under 308 nm excitation, which exhibits an absolute temperature sensitivity of 1.96 × 10-3 K-1 (320 K), and a flexible film was prepared by incorporating polydimethylsiloxane. This shows the promise of hybrid metal halides as photoluminescent materials and their possibilities for temperature sensing.

3.
Clin Cardiol ; 47(2): e24212, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38402553

RESUMO

BACKGROUND: This study aimed to investigate the risk factors for nonrecovery of left ventricular ejection fraction (LVEF) during follow-up in patients with acute myocardial infarction (AMI) who underwent percutaneous coronary intervention (PCI) combined with reduced LVEF, and establish and verify a risk prediction model based on these factors. METHODS: In this study, patients with AMI who underwent PCI in a high-volume PCI center between December 2018 and December 2021 were consecutively enrolled, screened, and randomly assigned to the model establishment and validation cohorts. A predictive model method based on least absolute shrinkage and selection operator regression was used for establishment and validation. RESULTS: Cardiac troponin I, myoglobin, left ventricular end-diastolic dimension, multivessel disease, and no-reflow were identified as potential predictors of LVEF recovery failure. The areas under the curve were 0.703 and 0.665 in the model establishment and validation cohorts, respectively, proving that the prediction model had some predictive ability. The calibration curves of the two cohorts showed good agreement with those of the nomogram model. In addition, the decision curve analysis showed that the model had a net clinical benefit. CONCLUSION: This prediction model can assess the risk of nonrecovery of LVEF in patients with AMI undergoing PCI combined with LVEF reduction during follow-up, and conveniently screen high-risk patients with nonrecoverable LVEF early.


Assuntos
Infarto do Miocárdio , Intervenção Coronária Percutânea , Humanos , Volume Sistólico , Função Ventricular Esquerda , Diástole , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/terapia
4.
Dalton Trans ; 53(24): 10235-10243, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38828765

RESUMO

Organic-inorganic metal halides (OIMHs) have drawn considerable attention due to their remarkable optoelectronic properties and substantial promise for nonlinear optical applications. In this research, phenazine has been selected as the organic cation because of its π-conjugated feature. Three compounds, (C12H9N2)PbCl3, (C12H9N2)SbCl4, and (C12H9N2)2InBr4·Br, were synthesized. Initial space group assignments were centrosymmetric for (C12H9N2)PbCl3 and (C12H9N2)SbCl4. However, under 1550 nm laser excitation, (C12H9N2)PbCl3 and (C12H9N2)SbCl4 exhibited second harmonic generation intensities ∼1.7 times greater than that of the benchmark KH2PO4. Structural reevaluation ultimately confirmed non-centrosymmetric P1 and P21 space groups for (C12H9N2)PbCl3 and (C12H9N2)SbCl4, respectively. Upon excitation at 335 nm and 470 nm, (C12H9N2)PbCl3, (C12H9N2)SbCl4, and (C12H9N2)2InBr4·Br emit fluorescence at room temperature. (C12H9N2)2InBr4·Br exhibits reversible phase transitions, showing potential for phase change energy storage. Our research underscores the critical role of comprehensive experimental validation in determining the precise crystallographic space groups and reveals the extensive potential of OIMHs as versatile candidates for advanced optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA