RESUMO
Dissolved organic matter (DOM), as a very fine colloidal suspension, could inevitably affect the transformation process of dissolved organic nitrogen (DON) in drinking water treatment. Tryptophan and tyrosine were used as representatives of DON to investigate the interactions between amino acids and fulvic-like components of fluorescent DOM using titration experiments. The fluorescence intensity decreased significantly with the increasing fulvic acid (FA) concentration, suggesting that FA could greatly quench the intrinsic fluorescence of amino acids such as tryptophan and tyrosine. The absolute spectrum peaks of amino acids (AA) were changed in the presence of FA, possibly being resulted from non-covalent interactions between amino acids and FA. The specific hydrogen bonding and van der Waals forces played dominant roles in the interactions according to the results of theoretical analysis and thermodynamic calculation. The distance between donor and acceptor was 1.25 and 1.14 nm for the FA-tyrosine and FA-tryptophan system, indicating the energy transfer from tyrosine or tryptophan to FA. The association constant (K) decreased with the increase of temperature and pH value, while the change of ionic strength had no obvious influence on K value.