Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(5): 2059-2067, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38258754

RESUMO

Human respiratory adenovirus (ADV) is a highly infectious respiratory virus with potential for pandemics. There are currently no specific drugs to treat ADV worldwide, so early rapid detection of ADV infection is essential. In this study, we developed an innovative magnetic-optical triple-mode lateral flow immunoassay (LFIA) using magnetic quantum dots as immunomarkers. This novel approach addresses the need for rapid and accurate ADV detection, allowing for multimodal quantitative/semiquantitative analysis of magnetic, fluorescent, and visible signals within a mere 15 min. The lower limit of detection (LOD) for magnetic, fluorescent, and visual signals was determined to be 5.6 × 103, 1.2 × 103, and 1.95 × 104 copies/mL, respectively. The detection range for ADV using this approach was 1.2 × 103-5 × 107 copies/mL. Additionally, semiquantitative analysis, which is user-friendly and does not necessitate specialized equipment, was successfully implemented. Notably, seven respiratory viruses showed no cross-reactivity with the generated LFIA test strips. The intrabatch repeatability exhibited a coefficient of variation (CV) of less than 5%, while the interbatch repeatability had a CV of less than 15%. Furthermore, recovery values ranged from 95% to 106.8% for samples analyzed concurrently with dual signals at the same spiking concentration. The assay developed in this study boasts a wide detection range and exceptional sensitivity and specificity. This technique is exceptionally well-suited for on-site rapid detection, with the potential for personal self-testing and early ADV infection diagnosis. Its versatility extends to a broad array of application scenarios.


Assuntos
Adenoviridae , Fenômenos Magnéticos , Humanos , Imunoensaio/métodos , Sensibilidade e Especificidade , Limite de Detecção
2.
Mikrochim Acta ; 188(6): 206, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34046739

RESUMO

A portable surface-enhanced Raman scattering (SERS)-lateral flow immunoassay (LFIA) detector has been developed for the automatic and highly sensitive detection of West Nile virus (WNV) non-structural protein 1 (NS1) and actual WNV samples. Au@Ag nanoparticles (Au@Ag NPs) labeled with double-layer Raman molecules were used as SERS tags to prepare WNV-specific SERS-LFIA strips. On this platform, the WNV-specific antigen NS1 protein was quantitatively and sensitively detected. The detection limit for the WNV NS1 protein was 0.1 ng/mL, which was 100-fold more sensitive than visual signals. The detection limit for inactivated WNV virions was 0.2 × 102 copies/µL. The sensitivity of the SERS-LFIA detector was comparable to that of the fluorescence quantitative reverse transcription-polymerase chain reaction assay. The prepared SERS-LFIA strips exhibited high sensitivity and good specificity for WNV. Thus, the strips developed herein have clinical application value. Moreover, the portable SERS-LFIA detector enabled automatic and rapid detection of the SERS-LFIA strips. The platform established herein is expected to make a substantial contribution to the diagnosis and control of outbreaks of emerging infectious diseases, including WNV.


Assuntos
Imunoensaio/métodos , Análise Espectral Raman/métodos , Proteínas não Estruturais Virais/análise , Vírus do Nilo Ocidental/química , Anticorpos Imobilizados/imunologia , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Prata/química , Proteínas não Estruturais Virais/imunologia , Febre do Nilo Ocidental/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA