Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 22(11): 1317-1323, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37735525

RESUMO

Materials that possess the ability to self-heal cracks at room temperature, akin to living organisms, are highly sought after. However, achieving crack self-healing in inorganic materials, particularly with covalent bonds, presents a great challenge and often necessitates high temperatures and considerable atomic diffusion. Here we conducted a quantitative evaluation of the room-temperature self-healing behaviour of a fractured nanotwinned diamond composite, revealing that the self-healing properties of the composite stem from both the formation of nanoscale diamond osteoblasts comprising sp2- and sp3-hybridized carbon atoms at the fractured surfaces, and the atomic interaction transition from repulsion to attraction when the two fractured surfaces come into close proximity. The self-healing process resulted in a remarkable recovery of approximately 34% in tensile strength for the nanotwinned diamond composite. This discovery sheds light on the self-healing capability of nanostructured diamond, offering valuable insights for future research endeavours aimed at enhancing the toughness and durability of brittle ceramic materials.

2.
Langmuir ; 34(37): 10889-10896, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30157653

RESUMO

Elastic materials are candidates for process intensification of gas storage by forming gas hydrate. In this work, molecular dynamics simulations of hydrate nucleation in elastic silica double layers were performed to study the effect of elastic confined spaces on hydrate formation. It is found that in narrow confined spaces, hexagonal rings dominated the hydrogen bond network of water molecules established rapidly by a multisite nucleation mechanism. With molecules added, a bilayer water structure was formed finally because elastic space can adapt the volume expansion. In medium and wide confined spaces, hydrates were formed from a series of "pseudo cages" which are considered as precursors of complete hydrate cages. Moreover, the induction time for nucleation was a minimum when the elasticity of the silica layer changes: nucleation is fastest in the weak-elastic system. When the elasticity increases, it becomes hard to adapt the volume expansion during nucleation and also difficult to nucleate in very weak-elastic systems because of the fluctuation of the layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA