Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Genomics ; 113(4): 2108-2121, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33964421

RESUMO

Tomato is more prone to Tuta absoluta invasion and damages as compared to other host plants but the mechanism behind this preference has not been elucidated. Here, two contrasting host preference plants, tomato and eggplant, were used to investigate biochemical and transcriptomic modifications induced by T. absoluta infestation. Biochemical analysis at 0-72 h post T. absoluta infestation revealed significantly reduced concentrations of amino acid, fructose, sucrose, jasmonic acid, salicylic acid, and total phenols in tomato compared to eggplant, mainly at 48 h post T. absoluta infestation. Transcriptome analysis showed higher transcript changes in infested eggplant than tomato. Signaling genes had significant contributions to mediate plant immunity against T. absoluta, specifically genes associated with salicylic acid in eggplant. Genes from PR1b1, NPR1, NPR3, MAPKs, and ANP1 families play important roles to mitigate T. absoluta infestation. Our results will facilitate the development of control strategies against T. absoluta for sustainable tomato production.


Assuntos
Mariposas , Solanum lycopersicum , Solanum melongena , Animais , Perfilação da Expressão Gênica , Humanos , Solanum lycopersicum/genética , Mariposas/fisiologia , Solanum melongena/genética , Transcriptoma
2.
Arch Virol ; 166(8): 2333-2335, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34075444

RESUMO

The complete genome sequence of a novel iflavirus isolated from the gregarious and koinobiont endoparasitoid Tetrastichus brontispae, tentatively named "Tetrastichus brontispae RNA virus 3" (TbRV-3), was determined by total RNA and Sanger sequencing. The complete genome is 9998 nucleotides in length, 8934 nt of which encodes a putative polyprotein of 2978 amino acids. TbRV-3 was found to have a similar genome organization and to contain conserved domains and motifs found in other iflaviruses, with some variations. Phylogenetic analysis based on deduced amino acid sequences of the RdRp domain showed that TbRV-3 clustered with Dinocampus coccinellae paralysis virus (DcPV). However, the percent amino acid sequence identity of the putative capsid proteins of TbRV-3 and DcPV determined using BLASTp was below the species demarcation threshold (90%), suggesting that TbRV-3 is a new iflavirus. This is the first virus of the family Iflaviridae to be isolated from a wasp of the family Eulophidae.


Assuntos
Vírus de Insetos/classificação , Vespas/virologia , Sequenciamento Completo do Genoma/métodos , Sequência de Aminoácidos , Animais , Tamanho do Genoma , Genoma Viral , Vírus de Insetos/genética , Vírus de Insetos/isolamento & purificação , Fases de Leitura Aberta , Filogenia , Análise de Sequência de RNA
3.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808261

RESUMO

In host-parasitoid interactions, antagonistic relationship drives parasitoids to vary in virulence in facing different hosts, which makes these systems excellent models for stress-induced evolutionary studies. Venom compositions varied between two strains of Tetrastichus brontispae, Tb-Bl and Tb-On. Tb-Bl targets Brontispa longissima pupae as hosts, and Tb-On is a sub-population of Tb-Bl, which has been experimentally adapted to a new host, Octodonta nipae. Aiming to examine variation in parasitoid virulence of the two strains toward two hosts, we used reciprocal injection experiments to compare effect of venom/ovarian fluids from the two strains on cytotoxicity, inhibition of immunity and fat body lysis of the two hosts. We found that Tb-Onvenom was more virulent towards plasmatocyte spreading, granulocyte function and phenoloxidase activity than Tb-Blvenom. Tb-Blovary was able to suppress encapsulation and phagocytosis in both hosts; however, Tb-Onovary inhibition targeted only B. longissima. Our data suggest that the venom undergoes rapid evolution when facing different hosts, and that the wasp has good evolutionary plasticity.


Assuntos
Besouros/parasitologia , Especificidade de Hospedeiro/genética , Interações Hospedeiro-Parasita/fisiologia , Animais , Evolução Molecular , Himenópteros/fisiologia , Fagocitose/fisiologia , Pupa/parasitologia , Virulência , Vespas/fisiologia
4.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111099

RESUMO

External secretions, composed of a variety of chemical components, are among the most important traits that endow insects with the ability to defend themselves against predators, parasites, or other adversities, especially pathogens. Thus, these exudates play a crucial role in external immunity. Red palm weevil larvae are prolific in this regard, producing large quantities of p-benzoquinone, which is present in their oral secretion. Benzoquinone with antimicrobial activity has been proven to be an active ingredient and key factor for external immunity in a previous study. To obtain a better understanding of the genetic and molecular basis of external immune secretions, we identify genes necessary for p-benzoquinone synthesis. Three novel ARSB genes, namely, RfARSB-0311, RfARSB-11581, and RfARSB-14322, are screened, isolated, and molecularly characterized on the basis of transcriptome data. To determine whether these genes are highly and specifically expressed in the secretory gland, we perform tissue/organ-specific expression profile analysis. The functions of these genes are further determined by examining the antimicrobial activity of the secretions and quantification of p-benzoquinone after RNAi. All the results reveal that the ARSB gene family can regulate the secretory volume of p-benzoquinone by participating in the biosynthesis of quinones, thus altering the host's external immune inhibitory efficiency.


Assuntos
Benzoquinonas/metabolismo , Larva/genética , Larva/metabolismo , N-Acetilgalactosamina-4-Sulfatase/genética , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Gorgulhos/genética , Gorgulhos/imunologia , Animais , Líquidos Corporais/imunologia , Imunidade , Insetos/genética , Larva/imunologia , Interferência de RNA , Glândulas Salivares/imunologia , Glândulas Salivares/metabolismo , Transcriptoma
5.
J Insect Sci ; 19(6)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31679019

RESUMO

Alternanthera philoxeroides (Mart.) Griseb. is an invasive herbaceous amphibious weed species in China. A pyralid moth Herpetogramma basalis (Walker) was discovered feeding on A. philoxeroides through field surveys and may be a potentially useful biocontrol agent. To determine the host range of H. basalis and evaluate its potential to control A. philoxeroides, no-choice and multiple-choice tests were conducted. Herpetogramma basalis fed on target weeds and 29 nontarget plant species. In addition to the target weed A. philoxeroides, H. basalis developed to adult on eight other nontarget species. Herpetogramma basalis survived to adulthood successfully on A. philoxeroides and less successfully on several other Amaranthaceae species. In multiple-choice studies, H. basalis showed a strong oviposition preference for A. philoxeroides over Amaranthus tricolor L. (Centrospermae: Amaranthaceae). Amaranthus tricolor was the only crop plant that supported the complete development of H. basalis. We cautiously recommend H. basalis for the biological control of A. philoxeroides in China.


Assuntos
Amaranthaceae , Mariposas , Controle Biológico de Vetores , Animais , Preferências Alimentares , Especificidade de Hospedeiro , Larva , Oviposição , Controle de Plantas Daninhas
6.
J Insect Sci ; 19(1)2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30690535

RESUMO

Cryptochromes act as photoreceptors or integral components of the circadian clock that involved in the regulation of circadian clock and regulation of migratory activity in many animals, and they may also act as magnetoreceptors that sensed the direction of the Earth's magnetic field for the purpose of navigation during animals' migration. Light is a major environmental signal for insect circadian rhythms, and it is also necessary for magnetic orientation. We identified the full-length cDNA encoding As-CRY1 and As-CRY2 in Agrotis segetum Denis and Schiffermaller (turnip moth (Lepidoptera: Noctuidae)). The DNA photolyase domain and flavin adenine dinucleotide-binding domain were found in both cry genes, and multiple alignments showed that those domains that are important for the circadian clock and magnetosensing were highly conserved among different animals. Quantitative polymerase chain reaction showed that cry genes were expressed in all examined body parts, with higher expression in adults during the developmental stages of the moths. Under a 14:10 (L:D) h cycle, the expression of cry genes showed a daily biological rhythm, and light can affect the expression levels of As-cry genes. The expression levels of cry genes were higher in the migratory population than in the reared population and higher in the emigration population than in the immigration population. These findings suggest that the two cryptochrome genes characterized in the turnip moth might be associated with the circadian clock and magnetosensing. Their functions deserve further study, especially for potential control of the turnip moth.


Assuntos
Migração Animal/fisiologia , Criptocromos/genética , Mariposas/genética , Animais , Relógios Circadianos/fisiologia , Criptocromos/metabolismo , Feminino , Luz , Fenômenos Magnéticos , Masculino , Mariposas/fisiologia , Transcriptoma/fisiologia , Transcriptoma/efeitos da radiação
7.
Mol Phylogenet Evol ; 127: 1000-1009, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29981933

RESUMO

Wolbachia pipientis is a diverse, ubiquitous and most prevalent intracellular bacterial group of alpha-Proteobacteria that is concerned with many biological processes in arthropods. The coconut hispine beetle (CHB), Brontispa longissima (Gestro) is an economically important pest of palm cultivation worldwide. In the present study, we comprehensively surveyed the Wolbachia-infection prevalence and mitochondrial DNA (mtDNA) polymorphism in CHB from five different geographical locations, including China's Mainland and Taiwan, Vietnam, Thailand, Malaysia and Indonesia. A total of 540 sequences were screened in this study through three different genes, i.e., cytochrome oxidase subunit I (COI), Wolbachia outer surface protein (wsp) and multilocus sequencing type (MLST) genes. The COI genetic divergence ranges from 0.08% to 0.67%, and likewise, a significant genetic diversity (π = 0.00082; P = 0.049) was noted within and between all analyzed samples. In the meantime, ten different haplotypes (H) were characterized (haplotype diversity = 0.4379) from 21 different locations, and among them, H6 (46 individuals) have shown a maximum number of population clusters than others. Subsequently, Wolbachia-prevalence results indicated that all tested specimens of CHB were found positive (100%), which suggested that CHB was naturally infected with Wolbachia. Wolbachia sequence results (wsp gene) revealed a high level of nucleotide diversity (π = 0.00047) under Tajima's D test (P = 0.049). Meanwhile, the same trend of nucleotide diversity (π = 0.00041) was observed in Wolbachia concatenated MLST locus. Furthermore, phylogenetic analysis (wsp and concatenated MLST genes) revealed that all collected samples of CHB attributed to same Wolbachia B-supergroup. Our results strongly suggest that Wolbachia bacteria and mtDNA were highly concordant with each other and Wolbachia can affect the genetic structure and diversity within the CHB populations.


Assuntos
Cocos/parasitologia , Besouros/genética , Besouros/microbiologia , DNA Mitocondrial/genética , Genômica , Wolbachia/genética , Animais , Ásia Oriental , Geografia , Haplótipos/genética , Funções Verossimilhança , Tipagem de Sequências Multilocus , Filogenia , Polimorfismo Genético , Wolbachia/classificação
8.
Microb Pathog ; 124: 337-345, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30172903

RESUMO

The Nipa palm hispid, Octodonta nipae (Maulik) is an important invasive pest of palm trees particularly in Southern China. How this beetle interacts with invading pathogens via its immune system remains to be dissected. Steinernema carpocapsae is a pathogenic nematode that attacks a number of insects of economic importance. The present study systematically investigates the cellular immune responses of O. nipae against S. carpocapsae infection using combined immunological, biochemical and transcriptomics approaches. Our data reveal that S. carpocapsae efficiently resists being encapsulated and melanized within the host's hemolymph and most of the nematodes were observed moving freely in the hemolymph even at 24 h post incubation. Consistently, isolated cuticles from the parasite also withstand encapsulation by the O. nipae hemocytes at all-time points. However, significant encapsulation and melanization of the isolated cuticles were recorded following heat treatment of the cuticles. The host's phenoloxidase activity was found to be slightly suppressed due to S. carpocapsae infection. Furthermore, the expression levels of some antimicrobial peptide (AMP) genes were significantly up-regulated in the S. carpocapsae-challenged O. nipae. Taken together, our data suggest that S. carpocapsae modulates and surpasses the O. nipae immune responses and hence can serve as an excellent biological control agent of the pest.


Assuntos
Besouros/imunologia , Besouros/parasitologia , Nematoides/fisiologia , Animais , China , Besouros/genética , Hemolinfa/imunologia , Hemolinfa/parasitologia , Interações Hospedeiro-Parasita , Imunidade Celular , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia
9.
Microb Pathog ; 118: 378-386, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29596879

RESUMO

The hispid leaf beetle, Octodonta nipae (Maulik), (Coleoptera: Chrysomelidae), is a devastating pest of palm cultivation worldwide. Endosymbiotic bacteria in the genus Wolbachia are arguably one of the most abundant bacterial group associated with arthropods. Owing to its critical effects on host reproduction, Wolbachia has garnered much attention as a prospective future tool for insect pest management. However, their association, infection dynamics, and functionality remain unknown in this insect pest. Here, we diagnosis for the first time, the infection prevalence, and occurrence of Wolbachia in O. nipae. Experimental evidence by the exploration of wsp gene vindicate that O. nipae is naturally infected with bacterial symbiont of genus Wolbachia, showing a complete maternal inheritance with shared a common Wolbachia strain (wNip). Moreover, MLST (gatB, fbpA, coxA, ftsZ, and hcpA) analysis enabled the detections of new sequence type (ST-484), suggesting a particular genotypic association of O. nipae and Wolbachia. Subsequently, quantitative real-time PCR (qPCR) assay demonstrated variable infection density across different life stages (eggs, larvae, pupae and adult male and female), body parts (head, thorax, abdomen), and tissues (ovaries, testes, and guts). Infection density was higher in egg and female adult stage, as well as abdomen and reproductive tissues as compared to other samples. Interestingly, Wolbachia harbored dominantly in a female than the male adult, while, no significant differences were observed between male and female body parts and tissues. Phylogeny of Wolbachia infection associated with O. nipae rectified from all tested life stages were unique and fall within the same monophyletic supergroup-A of Wolbachia clades. The infection density of symbiont is among the valuable tool to understand their biological influence on hosts, and this latest discovery would facilitate the future investigations to understand the host-symbiont complications and its prospective role as a microbiological agent to reduce pest populations.


Assuntos
Fenômenos Fisiológicos Bacterianos , Besouros/microbiologia , Filogenia , Simbiose , Wolbachia/classificação , Wolbachia/isolamento & purificação , Animais , Proteínas de Bactérias/genética , Besouros/patogenicidade , Besouros/fisiologia , DNA Bacteriano/análise , Feminino , Genes Bacterianos/genética , Vetores Genéticos , Tamanho do Genoma , Técnicas de Genotipagem , Larva/microbiologia , Masculino , Tipagem de Sequências Multilocus , Doenças das Plantas/parasitologia , Reprodução , Alinhamento de Sequência , Wolbachia/genética
10.
Int J Mol Sci ; 19(2)2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29438348

RESUMO

Pollen grains are regularly used as markers to determine an insect's movement patterns or host (plant) feeding behavior, yet conventional morphology-based pollen grain analysis (or palynology) encounters a number of important limitations. In the present study, we combine conventional analytical approaches with DNA meta-barcoding to identify pollen grains attached to migrating adults of the turnip moth, Agrotis segetum (Lepidoptera: Noctuidae) in Northeast China. More specifically, pollen grains were dislodged from 2566 A. segetum long-distance migrants captured on Beihuang Island (Bohai Sea) and identified to many (plant) species level. Pollen belonged to 26 families of plants, including Fagaceae, Oleaceae, Leguminosae, Asteraceae, Pinaceae and Rosaceae, including common species such as Citrus sinensis, Olea europaea, Ligustrum lucidum, Robinia pseudoacacia, Castanopsis echinocarpa, Melia azedarach and Castanea henryi. As the above plants are indigenous to southern climes, we deduce that A. segetum forage on plants in those locales prior to engaging in northward spring migration. Our work validates the use of DNA-assisted approaches in lepidopteran pollination ecology research and provides unique and valuable information on the adult feeding range and geographical origin of A. segetum. Our findings also enable targeted (area-wide) pest management interventions or guide the future isolation of volatile attractants.


Assuntos
Distribuição Animal , Comportamento Alimentar , Mariposas/fisiologia , Pólen/genética , Animais , Magnoliopsida/genética , Magnoliopsida/fisiologia , Pólen/classificação , Pólen/ultraestrutura , Polinização
11.
Can J Infect Dis Med Microbiol ; 2018: 9139306, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977416

RESUMO

The nipa palm hispid beetle, Octodonta nipae (Maulik) (Coleoptera: Chrysomelidae), is an important invasive pest on palm plants in southern China. Based on existing transcriptome data, polymorphism simple sequence repeat (SSR) loci were identified. In total, 1274 SSR loci were identified from 49919 unigenes. The majority of them contained mononucleotide, dinucleotide, and trinucleotide motifs (43.56%, 26.14%, and 28.18%), in which A/T (41.21%) and AT/TA (15.86%) were the most abundant motifs. 104 pairs of the SSR primers produced amplification bands of expected sizes in O. nipae, 80 pairs of SSR primers were tested randomly for polymorphism, 9 loci of them were validated to be polymorphic markers, and the number of alleles ranged from 2 to 3, with an average of 2.56 per locus. The population of Zhangzhou and Fuzhou was analyzed by the 9 loci (On1-On9). These SSR transcriptome data can provide invaluable resource for SSR development, population genetics research, invasion and expansion mechanism, paternity testing, and other research on O. nipae and its related species.

12.
Artigo em Inglês | MEDLINE | ID: mdl-28990217

RESUMO

A typical characteristic of the insect innate immune system is the activation of the serine protease cascade in the hemolymph. As being the terminal component of the extracellular serine protease cascade in the prophenoloxidase (proPO) activating system, proPO-activating factors (PPAFs) activated by the upstream cascade may generate active phenoloxidase, which then induces downstream melanization. In the present study, we reported three PPAFs from the nipa palm hispid beetle Octodonta nipae (Maulik) (designated as OnPPAF1, OnPPAF2, OnPPAF3). All three OnPPAFs contained a single clip domain at the amino-terminus followed by a trypsin-like serine protease domain at the carboxyl-terminus, except the Ser in the active sites of OnPPAF2 and OnPPAF3 was substituted with Gly. Transcript expression analysis revealed that all OnPPAFs were highly expressed in hemolymph, whereas OnPPAF2 showed an extremely low mRNA abundance compared with that of OnPPAF1 and OnPPAF3, and that the abundance of all three OnPPAFs was dramatically increased upon bacterial challenge. Knockdown of OnPPAF1 or OnPPAF3 resulted in a reduction of hemolymph phenoloxidase activity and an inhibition of hemolymph melanization, whereas the knockdown of OnPPAF2 did not affect the proPO cascade. Our work thus implies that the three OnPPAFs may have different functions and regulation during immune responses in O. nipae.


Assuntos
Catecol Oxidase/metabolismo , Besouros/metabolismo , Precursores Enzimáticos/metabolismo , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Besouros/genética , Besouros/imunologia , Expressão Gênica , Hemolinfa/enzimologia , Imunidade Inata , Proteínas de Insetos/metabolismo , Melaninas/metabolismo , Filogenia , Interferência de RNA , Serina Endopeptidases/genética , Serina Proteases/metabolismo
13.
Pestic Biochem Physiol ; 143: 39-47, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29183609

RESUMO

Myzus persicae (Sulzer) is one of the most serious agricultural pests in China, and management strategies mainly rely on insecticidal treatment. To evaluate the resistance of field populations of M. persicae to seven insecticides, we assessed the susceptibility of 11 field populations collected from eight provinces in China using leaf-dip bioassays. Toxicity assays showed that M. persicae field populations have developed several levels of resistance to each tested insecticide. For pyrethroids, the field populations have developed a high level of resistance to ß-cypermethrin and cypermethrin, while the resistance to bifenthrin is still low. The resistance ratios of field populations to imidacloprid ranged from 1.48 to 52.36, and eight populations have developed moderate to high resistance. Resistance to acetamiprid is low, and only two populations have a moderate level of resistance. Most of the field populations of M. persicae developed moderate to high resistance to methomyl and omethoate. To investigate potential resistance mechanisms, we analyzed the enzyme activity of carboxylesterases, the type of amplified esterase genes, as well as the kdr (L1014F) mutation. All of the field populations exhibited a higher esterase activity compared to the laboratory susceptible strain. An amplified FE4, as well as the L1014F mutation, were also found in all of our experimental field populations. These results provide valuable insight into the current status of insecticide resistance and will prove to be a valuable resource in designing appropriate resistance management strategies for M. persicae in China.


Assuntos
Afídeos/efeitos dos fármacos , Resistência a Inseticidas/genética , Inseticidas/toxicidade , Animais , Afídeos/enzimologia , Afídeos/genética , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , China , Frequência do Gene , Genótipo , Mutação , Canais de Sódio/genética
14.
Bull Entomol Res ; 106(5): 642-50, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27215940

RESUMO

There is an ongoing relationship between host plants and herbivores. The nutrient substances and secondary compounds found in the host plant can not only impact the growth and development process of herbivores, but, more importantly, may also affect their survival and reproductive fitness. Vitellogenesis is the core process of reproductive regulation and is generally considered as a reliable indicator for evaluating the degree of ovarian development in females. Vitellogenin (Vg) plays a critical role in the synthesis and secretion of yolk protein. In this study, the full-length cDNA of the Vg gene in an alien invasive species, the nipa palm hispid beetle Octodonta nipae Maulik (Coleoptera: Chrysomelidae) (OnVg) was cloned and, the effect of host plant on the OnVg expression level and ovarian development was investigated. The results revealed that the OnVg was highly and exclusively expressed in adult females, but barely detectable in larvae, pupae and adult males. The relative expression level of OnVg and egg hatchability were much higher in females fed on Phoenix canariensis (their preferred host) than those fed on Phoenix roebelenii. A positive correlation relationship between OnVg expression and egg hatchability was also detected. Additionally, the anatomy of the female reproductive system showed that the ovaries of individuals fed on P. canariensis were considerably more developed than in females fed on P. roebelenii. The results may be applicable to many pest management situations through reproductive disturbance by alternating host plant species or varieties or by reproductive regulation through vitellogenesis mediated by specific endocrine hormones.


Assuntos
Clonagem Molecular , Besouros/fisiologia , Proteínas de Insetos/genética , Vitelogeninas/genética , Animais , Besouros/genética , Besouros/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Espécies Introduzidas , Larva/genética , Larva/metabolismo , Larva/fisiologia , Masculino , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Filogenia , Análise de Sequência de Proteína , Vitelogeninas/química , Vitelogeninas/metabolismo
15.
J Econ Entomol ; 107(4): 1486-95, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25195440

RESUMO

In southeastern China, the invasion of the nipa palm hispid Octodonta nipae (Maulik) (Coleoptera: Chrysomelidae) results in devastating damage to palms. Host plants play an important role in the population increases and outbreaks of O. nipae. O. nipae could not complete its development on the Majestic palm (Ravenea rivularis Jumelle & Perrier), and females did not lay eggs on Chinese fan palm (Livistona chinensis R. Brown). However, this insect species both completed development and laid eggs on Chinese windmill palm (Trachycarpus fortunei (Hooker) H. Wendland), Canary Island date palm (Phoenix canariensis Chabaud), and pygmy date palm (Phoenix roebelenii O' Brien). The demographic characteristics of O. nipae reared on Chinese windmill palm, Canary Island date palm, and pygmy date palm were compared with an age-stage, two-sex life table. In this study, the developmental periods from egg to adult varied from 42.1 d on Chinese windmill palm to 49.8 d on pygmy date palm. The survivorship from egg to adult on Chinese windmill palm, Canary Island date palm, and pygmy date palm was 77.5, 79.4, and 66.7%, respectively. Although the adult longevity and the mean fecundity for individuals reared on Chinese windmill palm, Canary Island date palm, and pygmy date palm were not significantly different, there were significant differences in the intrinsic rate of increase, the finite rate, and the mean generation time among palm species, and the values of intrinsic rate of increase and finite rate were higher for populations reared on Chinese windmill palm and Canary Island date palm (0.0313 and 1.0318 d(-1) and 0.0278 and 1.0282 d(-1), respectively) and lower for populations reared on pygmy date palm (0.0192 and 1.0194 d(-1)). However, mean generation time was shorter on Chinese windmill palm (124.11 d) and Canary Island date palm (129.62 d) and longer on pygmy date palm (166.03 d). Our study indicated that different hosts affected life parameters of O. nipae, with the most preferred hosts being the Chinese windmill palm and Canary Island date palm. These results may be useful for the design of culture management strategies for O. nipae.


Assuntos
Arecaceae , Besouros/crescimento & desenvolvimento , Espécies Introduzidas , Fatores Etários , Animais , Feminino , Fertilidade , Tábuas de Vida , Longevidade , Masculino , Crescimento Demográfico , Reprodução
16.
J Insect Sci ; 142014.
Artigo em Inglês | MEDLINE | ID: mdl-25527573

RESUMO

Insect herbivores often have higher densities on host plants grown in monocultures than those in diverse environments. The underlying mechanisms are thought to be that polyphagous insects have difficulty in selecting food or oviposition sites when multiple host plants exist. However, this hypothesis needs to be extensively investigated. Our field experiments revealed that the population of the diamondback moths, Plutella xylostella (L.) (Lepidoptera: Plutellidae), significantly decreased in a mixed cropping field compared with a monoculture. To determine the reasons for the reduction in population in the mixed cropping field, the takeoff behavior and fecundity of females in no-choice and free-choice laboratory environments were compared by video recordings of host selection by P. xylostella. Adults displayed a significantly higher takeoff frequency in free-choice environments than those in no-choice treatments and preferred landing on Brassica campestris (L.) or Brassica juncea (Coss) plants in contrast with Brassica oleracea (L.). Female adults in the free-choice environment also laid fewer eggs compared with the monoculture. Olfaction experiments demonstrated orientation by P. xylostella to host volatiles when presented with a choice between plant odors and clean air, but females showed no preference when odors from three Brassicaceae species were presented simultaneously. We conclude that mixed cropping alters the host-finding behavior of P. xylostella resulting in reduced oviposition.


Assuntos
Agricultura , Brassica , Cadeia Alimentar , Mariposas/fisiologia , Oviposição , Animais , Brassica/crescimento & desenvolvimento , China , Feminino , Fertilidade , Mostardeira/crescimento & desenvolvimento , Orientação , Reprodução , Gravação em Vídeo
17.
Insects ; 15(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38249041

RESUMO

Symbiotic systems are intimately integrated at multiple levels. Host-endosymbiont metabolic complementarity in amino acid biosynthesis is especially important for sap-feeding insects and their symbionts. In weevil-Nardonella endosymbiosis, the final step reaction of the endosymbiont tyrosine synthesis pathway is complemented by host-encoded aminotransferases. Based on previous results from other insects, we suspected that these aminotransferases were likely transported into the Nardonella cytoplasm to produce tyrosine. Here, we identified five aminotransferase genes in the genome of the red palm weevil. Using quantitative real-time RT-PCR, we confirmed that RfGOT1 and RfGOT2A were specifically expressed in the bacteriome. RNA interference targeting these two aminotransferase genes reduced the tyrosine level in the bacteriome. The immunofluorescence-FISH double labeling localization analysis revealed that RfGOT1 and RfGOT2A were present within the bacteriocyte, where they colocalized with Nardonella cells. Immunogold transmission electron microscopy demonstrated the localization of RfGOT1 and RfGOT2A in the cytosol of Nardonella and the bacteriocyte. Our data revealed that RfGOT1 and RfGOT2A are transported into the Nardonella cytoplasm to collaborate with genes retained in the Nardonella genome in order to synthesize tyrosine. The results of our study will enhance the understanding of the integration of host and endosymbiont metabolism in amino acid biosynthesis.

18.
Insects ; 15(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38667347

RESUMO

Bacterial symbionts associated with insects can be crucial in insect nutrition, metabolism, immune responses, development, and reproduction. However, the bacterial symbionts of the fall armyworm Spodoptera frugiperda remain unclear. S. frugiperda is an invasive polyphagous pest that severely damages many crops, particularly maize and wheat. Here, we investigated the infection, composition, abundance, and diversity of bacterial symbionts, especially Wolbachia, in different tissues of S. frugiperda female adults. The infection prevalence frequencies of Wolbachia in five provinces of China, namely Pu'er, Yunnan; Nanning, Guangxi; Sanya, Hainan; Yunfu, Guangdong; and Nanping, Fujian, were assessed. The results indicated that Proteobacteria, Firmicutes, and Bacteroidetes were the three most dominant bacterial phyla in S. frugiperda adults. At the genus level, the abundant microbiota, which included Enterobacter and Enterococcus, varied in abundance between tissues of S. frugiperda. Wolbachia was found in the ovaries and salivary glands of S. frugiperda adults, and was present in 33.33% of the Pu'er, Yunnan, 23.33% of the Nanning, Guangxi, and 13.33% of the Sanya, Hainan populations, but Wolbachia was absent in the Yunfu, Guangdong and Nanping, Fujian populations. Further phylogenetic analyses revealed that all of the Wolbachia strains from the different S. frugiperda populations belonged to the supergroup B and were named the wFru strain. Since there were Wolbachia strains inducing cytoplasmic incompatibility in supergroup B, these findings may provide a foundation for developing potential biocontrol techniques against S. frugiperda.

19.
J Agric Food Chem ; 72(14): 7807-7817, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38514390

RESUMO

Mg(OH)2 was used as the nanocarrier of the Bacillus thuringiensis (Bt) Cry1Ac protein, and the synthesized Cry1Ac-Mg(OH)2 composites were regular and uniform nanosheets. Nano-Mg(OH)2 could effectively improve the insecticidal effect of the Cry1Ac protein toward Ectropis obliqua. It could enhance the damage degree of the Cry1Ac protein to intestinal epithelial cells and microvilli, induce and enrich the production of reactive oxygen species (ROS) in the midgut, and enhance the degradation of the Cry1Ac protein into active fragments. Furthermore, an anti-rinsing assay showed that the Cry1Ac-Mg(OH)2 composites were bound to the notch structure of the tea leaf surface. The retention of the Cry1Ac protein increased by 11.45%, and sprayed nano-Mg(OH)2 was rapidly absorbed by different tissues of tea plants. Moreover, nano-Mg(OH)2 and composites did not significantly affect non-target organisms. These results show that nano-Mg(OH)2 can serve as a safe and effective biopesticide carrier, which provides a new approach for stable and efficient Bt preparation.


Assuntos
Bacillus thuringiensis , Inseticidas , Mariposas , Animais , Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Proteínas Hemolisinas/metabolismo , Chá/metabolismo , Larva , Resistência a Inseticidas
20.
Insects ; 15(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535407

RESUMO

Red palm weevil, Rhynchophorus ferrugineus (Olivier), is a palm tree insect pest that causes significant damage in the many countries from the Indian sub-continent and southeast Asia into date palm-growing countries of Africa, the Middle East, and the Mediterranean Basin. This study is aimed at determining the role of a C-type lectin, RfCTL27, in the immune defense of RPW larvae. RfCTL27 is a secreted protein that possesses a QPD motif, being integral for the discrimination of Gram-negative bacteria. The abundance of RfCTL27 transcripts in the gut and fat body was significantly higher than that in other tissues. Six hours after injection of Escherichia coli, the expression level of RfCTL27 in the gut of RPW larvae was significantly elevated compared with other groups. At 12 h after injection of E. coli, the expression of RfCTL27 in fat body was dramatically induced in contrast with other treatments. More interestingly, the ability of RPW larvae to clear the pathogenic bacteria in the body cavity and gut was markedly impaired by the silencing of RfCTL27. Additionally, the expression levels of two antimicrobial peptide genes, RfCecropin in the gut and RfDefensin in fat body of RPW larvae, were significantly decreased. Taken together, these data suggested that RfCTL27 can recognize the Gram-negative bacterium and activate the expression of antimicrobial peptides to remove the invaded bacterial pathogens. This study provides a new scientific basis for improving the control efficiency of pathogenic microorganisms against red palm weevils in production practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA