Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34521754

RESUMO

Eukaryote-eukaryote endosymbiosis was responsible for the spread of chloroplast (plastid) organelles. Stability is required for the metabolic and genetic integration that drives the establishment of new organelles, yet the mechanisms that act to stabilize emergent endosymbioses-between two fundamentally selfish biological organisms-are unclear. Theory suggests that enforcement mechanisms, which punish misbehavior, may act to stabilize such interactions by resolving conflict. However, how such mechanisms can emerge in a facultative endosymbiosis has yet to be explored. Here, we propose that endosymbiont-host RNA-RNA interactions, arising from digestion of the endosymbiont population, can result in a cost to host growth for breakdown of the endosymbiosis. Using the model facultative endosymbiosis between Paramecium bursaria and Chlorella spp., we demonstrate that this mechanism is dependent on the host RNA-interference (RNAi) system. We reveal through small RNA (sRNA) sequencing that endosymbiont-derived messenger RNA (mRNA) released upon endosymbiont digestion can be processed by the host RNAi system into 23-nt sRNA. We predict multiple regions of shared sequence identity between endosymbiont and host mRNA, and demonstrate through delivery of synthetic endosymbiont sRNA that exposure to these regions can knock down expression of complementary host genes, resulting in a cost to host growth. This process of host gene knockdown in response to endosymbiont-derived RNA processing by host RNAi factors, which we term "RNAi collisions," represents a mechanism that can promote stability in a facultative eukaryote-eukaryote endosymbiosis. Specifically, by imposing a cost for breakdown of the endosymbiosis, endosymbiont-host RNA-RNA interactions may drive maintenance of the symbiosis across fluctuating ecological conditions.


Assuntos
Processos Fototróficos/genética , RNA/genética , Simbiose/genética , Chlorella/genética , Cloroplastos/genética , Eucariotos/genética , Paramecium/genética , Plastídeos/genética , Interferência de RNA/fisiologia
2.
Nat Rev Genet ; 18(1): 24-40, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795562

RESUMO

Our understanding of the genetic mechanisms that underlie biological processes has relied extensively on loss-of-function (LOF) analyses. LOF methods target DNA, RNA or protein to reduce or to ablate gene function. By analysing the phenotypes that are caused by these perturbations the wild-type function of genes can be elucidated. Although all LOF methods reduce gene activity, the choice of approach (for example, mutagenesis, CRISPR-based gene editing, RNA interference, morpholinos or pharmacological inhibition) can have a major effect on phenotypic outcomes. Interpretation of the LOF phenotype must take into account the biological process that is targeted by each method. The practicality and efficiency of LOF methods also vary considerably between model systems. We describe parameters for choosing the optimal combination of method and system, and for interpreting phenotypes within the constraints of each method.


Assuntos
Sistemas CRISPR-Cas , Inativação Gênica , Modelos Animais , Morfolinos/farmacologia , Mutagênese , Mutação/genética , Interferência de RNA , Animais , Genótipo , Humanos , Fenótipo , Especificidade da Espécie
3.
Proc Natl Acad Sci U S A ; 114(50): E10755-E10762, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29183982

RESUMO

Synthetic sick or synthetic lethal (SS/L) screens are a powerful way to identify candidate drug targets to specifically kill tumor cells, but this approach generally suffers from low consistency between screens. We found that many SS/L interactions involve essential genes and are therefore detectable within a limited range of knockdown efficiency. Such interactions are often missed by overly efficient RNAi reagents. We therefore developed an assay that measures viability over a range of knockdown efficiency within a cell population. This method, called Variable Dose Analysis (VDA), is highly sensitive to viability phenotypes and reproducibly detects SS/L interactions. We applied the VDA method to search for SS/L interactions with TSC1 and TSC2, the two tumor suppressors underlying tuberous sclerosis complex (TSC), and generated a SS/L network for TSC. Using this network, we identified four Food and Drug Administration-approved drugs that selectively affect viability of TSC-deficient cells, representing promising candidates for repurposing to treat TSC-related tumors.


Assuntos
Drosophila/genética , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Epistasia Genética , Genes Letais , Genes Supressores de Tumor , Interferência de RNA , Animais , Proteínas de Drosophila/genética , Sistemas de Liberação de Medicamentos , Redes Reguladoras de Genes , Genes Essenciais , Humanos , Células Tumorais Cultivadas
4.
Development ; 143(2): 219-31, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26657768

RESUMO

Notch signalling is involved in a multitude of developmental decisions and its aberrant activation is linked to many diseases, including cancers. One example is the neural stem cell tumours that arise from constitutive Notch activity in Drosophila neuroblasts. To investigate how hyperactivation of Notch in larval neuroblasts leads to tumours, we combined results from profiling the upregulated mRNAs and mapping the regions bound by the core Notch pathway transcription factor Su(H). This identified 246 putative direct Notch targets. These genes were highly enriched for transcription factors and overlapped significantly with a previously identified regulatory programme dependent on the proneural transcription factor Asense. Included were genes associated with the neuroblast maintenance and self-renewal programme that we validated as Notch regulated in vivo. Another group were the so-called temporal transcription factors, which have been implicated in neuroblast maturation. Normally expressed in specific time windows, several temporal transcription factors were ectopically expressed in the stem cell tumours, suggesting that Notch had reprogrammed their normal temporal regulation. Indeed, the Notch-induced hyperplasia was reduced by mutations affecting two of the temporal factors, which, conversely, were sufficient to induce mild hyperplasia on their own. Altogether, the results suggest that Notch induces neuroblast tumours by directly promoting the expression of genes that contribute to stem cell identity and by reprogramming the expression of factors that could regulate maturity.


Assuntos
Proteínas de Drosophila/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Receptores Notch/metabolismo , Animais , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster , Receptores Notch/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Nat Methods ; 13(7): 563-567, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27214048

RESUMO

Several programmable transcription factors exist based on the versatile Cas9 protein, yet their relative potency and effectiveness across various cell types and species remain unexplored. Here, we compare Cas9 activator systems and examine their ability to induce robust gene expression in several human, mouse, and fly cell lines. We also explore the potential for improved activation through the combination of the most potent activator systems, and we assess the role of cooperativity in maximizing gene expression.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Drosophila melanogaster/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Drosophila melanogaster/genética , Genes vpr , Engenharia Genética , Humanos , Camundongos , Fatores de Transcrição/genética
6.
Proc Natl Acad Sci U S A ; 113(35): 9940-5, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27528688

RESUMO

During development and homeostasis, cells integrate multiple signals originating either from neighboring cells or systemically. In turn, responding cells can produce signals that act in an autocrine, paracrine, or endocrine manner. Although the nature of the signals and pathways used in cell-cell communication are well characterized, we lack, in most cases, an integrative view of signaling describing the spatial and temporal interactions between pathways (e.g., whether the signals are processed sequentially or concomitantly when two pathways are required for a specific outcome). To address the extent of cross-talk between the major metazoan signaling pathways, we characterized immediate transcriptional responses to either single- or multiple pathway stimulations in homogeneous Drosophila cell lines. Our study, focusing on seven core pathways, epidermal growth factor receptor (EGFR), bone morphogenetic protein (BMP), Jun kinase (JNK), JAK/STAT, Notch, Insulin, and Wnt, revealed that many ligands and receptors are primary targets of signaling pathways, highlighting that transcriptional regulation of genes encoding pathway components is a major level of signaling cross-talk. In addition, we found that ligands and receptors can integrate multiple pathway activities and adjust their transcriptional responses accordingly.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica/genética , Transdução de Sinais/genética , Animais , Linhagem Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/efeitos dos fármacos , Insulina/farmacologia , Lipopolissacarídeos/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA/métodos , Transdução de Sinais/efeitos dos fármacos
7.
Trends Biochem Sci ; 39(10): 457-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25155749

RESUMO

The development and maintenance of the many different cell types in metazoan organisms requires robust and diverse intercellular communication mechanisms. Relatively few such signaling pathways have been identified, leading to the question of how such a broad diversity of output is generated from relatively simple signals. Recent studies have revealed complex mechanisms integrating temporal and spatial information to generate diversity in signaling pathway output. We review some general principles of signaling pathways, focusing on transcriptional outputs in Drosophila. We consider the role of spatial and temporal aspects of different transduction pathways and then discuss how recently developed tools and approaches are helping to dissect the complex mechanisms linking pathway stimulation to output.


Assuntos
Comunicação Celular , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Drosophila , Retroalimentação , Janus Quinases/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Fatores de Transcrição/metabolismo
8.
Nat Methods ; 12(4): 326-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25730490

RESUMO

The RNA-guided nuclease Cas9 can be reengineered as a programmable transcription factor. However, modest levels of gene activation have limited potential applications. We describe an improved transcriptional regulator obtained through the rational design of a tripartite activator, VP64-p65-Rta (VPR), fused to nuclease-null Cas9. We demonstrate its utility in activating endogenous coding and noncoding genes, targeting several genes simultaneously and stimulating neuronal differentiation of human induced pluripotent stem cells (iPSCs).


Assuntos
Endonucleases , Técnicas Genéticas , RNA Guia de Cinetoplastídeos , Ativação Transcricional , Diferenciação Celular/genética , Endonucleases/genética , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas , Neurônios/citologia , Staphylococcus aureus
9.
Proc Natl Acad Sci U S A ; 110(47): 19012-7, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24191015

RESUMO

The ability to engineer genomes in a specific, systematic, and cost-effective way is critical for functional genomic studies. Recent advances using the CRISPR-associated single-guide RNA system (Cas9/sgRNA) illustrate the potential of this simple system for genome engineering in a number of organisms. Here we report an effective and inexpensive method for genome DNA editing in Drosophila melanogaster whereby plasmid DNAs encoding short sgRNAs under the control of the U6b promoter are injected into transgenic flies in which Cas9 is specifically expressed in the germ line via the nanos promoter. We evaluate the off-targets associated with the method and establish a Web-based resource, along with a searchable, genome-wide database of predicted sgRNAs appropriate for genome engineering in flies. Finally, we discuss the advantages of our method in comparison with other recently published approaches.


Assuntos
Sistemas CRISPR-Cas/genética , Drosophila melanogaster/genética , Engenharia Genética/métodos , Genômica/métodos , Células Germinativas , Animais , Animais Geneticamente Modificados , Bases de Dados Genéticas , Proteínas de Drosophila/genética , Mutagênese/genética , Regiões Promotoras Genéticas/genética , Proteínas de Ligação a RNA/genética
10.
Mol Oncol ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129390

RESUMO

Neurofibromatosis type 1 (NF1) is a genetic disorder caused by mutation of the NF1 gene that is associated with various symptoms, including the formation of benign tumors, called neurofibromas, within nerves. Drug treatments are currently limited. The mitogen-activated protein kinase kinase (MEK) inhibitor selumetinib is used for a subset of plexiform neurofibromas (PNs) but is not always effective and can cause side effects. Therefore, there is a clear need to discover new drugs to target NF1-deficient tumor cells. Using a Drosophila cell model of NF1, we performed synthetic lethal screens to identify novel drug targets. We identified 54 gene candidates, which were validated with variable dose analysis as a secondary screen. Pathways associated with five candidates could be targeted using existing drugs. Among these, chloroquine (CQ) and bafilomycin A1, known to target the autophagy pathway, showed the greatest potential for selectively killing NF1-deficient Drosophila cells. When further investigating autophagy-related genes, we found that 14 out of 30 genes tested had a synthetic lethal interaction with NF1. These 14 genes are involved in multiple aspects of the autophagy pathway and can be targeted with additional drugs that mediate the autophagy pathway, although CQ was the most effective. The lethal effect of autophagy inhibitors was conserved in a panel of human NF1-deficient Schwann cell lines, highlighting their translational potential. The effect of CQ was also conserved in a Drosophila NF1 in vivo model and in a xenografted NF1-deficient tumor cell line grown in mice, with CQ treatment resulting in a more significant reduction in tumor growth than selumetinib treatment. Furthermore, combined treatment with CQ and selumetinib resulted in a further reduction in NF1-deficient cell viability. In conclusion, NF1-deficient cells are vulnerable to disruption of the autophagy pathway. This pathway represents a promising target for the treatment of NF1-associated tumors, and we identified CQ as a candidate drug for the treatment of NF1 tumors.

11.
R Soc Open Sci ; 8(4): 210140, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33996132

RESUMO

Endosymbiosis was fundamental for the evolution of eukaryotic complexity. Endosymbiotic interactions can be dissected through forward- and reverse-genetic experiments, such as RNA-interference (RNAi). However, distinguishing small (s)RNA pathways in a eukaryote-eukaryote endosymbiotic interaction is challenging. Here, we investigate the repertoire of RNAi pathway protein-encoding genes in the model nascent endosymbiotic system, Paramecium bursaria-Chlorella spp. Using comparative genomics and transcriptomics supported by phylogenetics, we identify essential proteome components of the small interfering (si)RNA, scan (scn)RNA and internal eliminated sequence (ies)RNA pathways. Our analyses reveal that copies of these components have been retained throughout successive whole genome duplication (WGD) events in the Paramecium clade. We validate feeding-induced siRNA-based RNAi in P. bursaria via knock-down of the splicing factor, u2af1, which we show to be crucial to host growth. Finally, using simultaneous knock-down 'paradox' controls to rescue the effect of u2af1 knock-down, we demonstrate that feeding-induced RNAi in P. bursaria is dependent upon a core pathway of host-encoded Dcr1, Piwi and Pds1 components. Our experiments confirm the presence of a functional, host-derived RNAi pathway in P. bursaria that generates 23-nt siRNA, validating the use of the P. bursaria-Chlorella spp. system to investigate the genetic basis of a nascent endosymbiosis.

12.
Sci Rep ; 9(1): 18628, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819141

RESUMO

In all metazoans, a small number of evolutionarily conserved signaling pathways are reiteratively used during development to orchestrate critical patterning and morphogenetic processes. Among these, Notch (N) signaling is essential for most aspects of tissue patterning where it mediates the communication between adjacent cells to control cell fate specification. In Drosophila, Notch signaling is required for several features of eye development, including the R3/R4 cell fate choice and R7 specification. Here we show that hypomorphic alleles of Notch, belonging to the Nfacet class, reveal a novel phenotype: while photoreceptor specification in the mutant ommatidia is largely normal, defects are observed in ommatidial rotation (OR), a planar cell polarity (PCP)-mediated cell motility process. We demonstrate that during OR Notch signaling is specifically required in the R4 photoreceptor to upregulate the transcription of argos (aos), an inhibitory ligand to the epidermal growth factor receptor (EGFR), to fine-tune the activity of EGFR signaling. Consistently, the loss-of-function defects of Nfacet alleles and EGFR-signaling pathway mutants are largely indistinguishable. A Notch-regulated aos enhancer confers R4 specific expression arguing that aos is directly regulated by Notch signaling in this context via Su(H)-Mam-dependent transcription.


Assuntos
Proteínas de Drosophila/genética , Receptores ErbB/genética , Proteínas do Olho/genética , Proteínas do Tecido Nervoso/genética , Receptores de Peptídeos de Invertebrados/genética , Receptores Notch/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Polaridade Celular/genética , Drosophila melanogaster/genética , Olho/metabolismo , Receptores Frizzled/genética , Morfogênese/genética , Células Fotorreceptoras de Invertebrados/metabolismo
13.
Cell Rep ; 26(3): 670-688.e6, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650359

RESUMO

Hippo signaling and the activity of its transcriptional coactivator, Yorkie (Yki), are conserved and crucial regulators of tissue homeostasis. In the Drosophila midgut, after tissue damage, Yki activity increases to stimulate stem cell proliferation, but how Yki activity is turned off once the tissue is repaired is unknown. From an RNAi screen, we identified the septate junction (SJ) protein tetraspanin 2A (Tsp2A) as a tumor suppressor. Tsp2A undergoes internalization to facilitate the endocytic degradation of atypical protein kinase C (aPKC), a negative regulator of Hippo signaling. In the Drosophila midgut epithelium, adherens junctions (AJs) and SJs are prominent in intestinal stem cells or enteroblasts (ISCs or EBs) and enterocytes (ECs), respectively. We show that when ISCs differentiate toward ECs, Tsp2A is produced, participates in SJ assembly, and turns off aPKC and Yki-JAK-Stat activity. Altogether, our study uncovers a mechanism allowing the midgut to restore Hippo signaling and restrict proliferation once tissue repair is accomplished.


Assuntos
Intestinos/fisiopatologia , Proteína Quinase C/metabolismo , Células-Tronco/metabolismo , Tetraspaninas/metabolismo , Proliferação de Células , Humanos , Transdução de Sinais
14.
Sci Signal ; 12(601)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575731

RESUMO

Inactivation of the VHL tumor suppressor gene is the signature initiating event in clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, and causes the accumulation of hypoxia-inducible factor 2α (HIF-2α). HIF-2α inhibitors are effective in some ccRCC cases, but both de novo and acquired resistance have been observed in the laboratory and in the clinic. Here, we identified synthetic lethality between decreased activity of cyclin-dependent kinases 4 and 6 (CDK4/6) and VHL inactivation in two species (human and Drosophila) and across diverse human ccRCC cell lines in culture and xenografts. Although HIF-2α transcriptionally induced the CDK4/6 partner cyclin D1, HIF-2α was not required for the increased CDK4/6 requirement of VHL-/- ccRCC cells. Accordingly, the antiproliferative effects of CDK4/6 inhibition were synergistic with HIF-2α inhibition in HIF-2α-dependent VHL-/- ccRCC cells and not antagonistic with HIF-2α inhibition in HIF-2α-independent cells. These findings support testing CDK4/6 inhibitors as treatments for ccRCC, alone and in combination with HIF-2α inhibitors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Mutações Sintéticas Letais , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Aminopiridinas/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Benzimidazóis/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Indanos/farmacologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Camundongos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Transdução de Sinais/genética , Especificidade da Espécie , Sulfonas/farmacologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Bio Protoc ; 8(24): e3112, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34532554

RESUMO

Genetic screens are a powerful approach to identify previously uncharacterized genes involved in specific biological processes. Several technologies have been developed for high-throughput screens using reagents such as RNAi or CRISPR, and each approach is associated with specific advantages and disadvantages. Variable Dose Analysis (VDA), is an RNAi-based method developed in Drosophila cells that improves signal-to-noise ratio compared to previous methods. VDA assays are performed by co-transfecting cells with a plasmid expressing shRNA, (a type of RNAi that can be easily expressed from a DNA plasmid) against a gene of interest and a second plasmid expressing a fluorescent reporter protein. Fluorescent protein expression, can be used as an indirect readout of shRNA expression and therefore target gene knockdown efficiency. Using this approach, we can measure phenotypes over a range of knockdown efficiencies in a single sample. When applied to genetic interaction screens, VDA results in improved consistency between screens and reliable detection of known interactions. Furthermore, because phenotypes are analyzed over a range of target gene knockdown efficiencies, VDA allows the detection of phenotypes and genetic interactions involving essential genes at sub-lethal knockdown efficiency. This therefore represents a powerful approach to high-throughput screening applicable to a wide range of biological questions.

16.
G3 (Bethesda) ; 8(2): 631-641, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29223976

RESUMO

Cells require some metals, such as zinc and manganese, but excess levels of these metals can be toxic. As a result, cells have evolved complex mechanisms for maintaining metal homeostasis and surviving metal intoxication. Here, we present the results of a large-scale functional genomic screen in Drosophila cultured cells for modifiers of zinc chloride toxicity, together with transcriptomics data for wild-type or genetically zinc-sensitized cells challenged with mild zinc chloride supplementation. Altogether, we identified 47 genes for which knockdown conferred sensitivity or resistance to toxic zinc or manganese chloride treatment, and >1800 putative zinc-responsive genes. Analysis of the 'omics data points to the relevance of ion transporters, glutathione (GSH)-related factors, and conserved disease-associated genes in zinc detoxification. Specific genes identified in the zinc screen include orthologs of human disease-associated genes CTNS, PTPRN (also known as IA-2), and ATP13A2 (also known as PARK9). We show that knockdown of red dog mine (rdog; CG11897), a candidate zinc detoxification gene encoding an ABCC-type transporter family protein related to yeast cadmium factor (YCF1), confers sensitivity to zinc intoxication in cultured cells, and that rdog is transcriptionally upregulated in response to zinc stress. As there are many links between the biology of zinc and other metals and human health, the 'omics data sets presented here provide a resource that will allow researchers to explore metal biology in the context of diverse health-relevant processes.


Assuntos
Drosophila melanogaster/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Genômica/métodos , Zinco/farmacologia , Animais , Linhagem Celular , Drosophila melanogaster/citologia , Homeostase/genética , Metais/metabolismo , Metais/farmacologia , Interferência de RNA , Zinco/metabolismo
17.
Elife ; 72018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29565247

RESUMO

We generated a library of ~1000 Drosophila stocks in which we inserted a construct in the intron of genes allowing expression of GAL4 under control of endogenous promoters while arresting transcription with a polyadenylation signal 3' of the GAL4. This allows numerous applications. First, ~90% of insertions in essential genes cause a severe loss-of-function phenotype, an effective way to mutagenize genes. Interestingly, 12/14 chromosomes engineered through CRISPR do not carry second-site lethal mutations. Second, 26/36 (70%) of lethal insertions tested are rescued with a single UAS-cDNA construct. Third, loss-of-function phenotypes associated with many GAL4 insertions can be reverted by excision with UAS-flippase. Fourth, GAL4 driven UAS-GFP/RFP reports tissue and cell-type specificity of gene expression with high sensitivity. We report the expression of hundreds of genes not previously reported. Finally, inserted cassettes can be replaced with GFP or any DNA. These stocks comprise a powerful resource for assessing gene function.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Biblioteca Gênica , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutagênese Insercional , Especificidade de Órgãos/genética , Fatores de Transcrição/metabolismo
18.
Bio Protoc ; 7(3)2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-28523286

RESUMO

A synthetic lethal interaction is a type of genetic interaction where the disruption of either of two genes individually has little effect but their combined disruption is lethal. Knowledge of synthetic lethal interactions can allow for elucidation of network structure and identification of candidate drug targets for human diseases such as cancer. In Drosophila, combinatorial gene disruption has been achieved previously by combining multiple RNAi reagents. Here we describe a protocol for high-throughput combinatorial gene disruption by combining CRISPR and RNAi. This approach previously resulted in the identification of highly reproducible and conserved synthetic lethal interactions (Housden et al., 2015).

19.
Dev Cell ; 43(1): 83-98.e6, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-29017032

RESUMO

Adipocytes sense systemic nutrient status and systemically communicate this information by releasing adipokines. The mechanisms that couple nutritional state to adipokine release are unknown. Here, we investigated how Unpaired 2 (Upd2), a structural and functional ortholog of the primary human adipokine leptin, is released from Drosophila fat cells. We find that Golgi reassembly stacking protein (GRASP), an unconventional secretion pathway component, is required for Upd2 secretion. In nutrient-rich fat cells, GRASP clusters in close proximity to the apical side of lipid droplets (LDs). During nutrient deprivation, glucagon-mediated increase in calcium (Ca2+) levels, via calmodulin kinase II (CaMKII) phosphorylation, inhibits proximal GRASP localization to LDs. Using a heterologous cell system, we show that human leptin secretion is also regulated by Ca2+ and CaMKII. In summary, we describe a mechanism by which increased cytosolic Ca2+ negatively regulates adipokine secretion and have uncovered an evolutionarily conserved molecular link between intracellular Ca2+ levels and energy homeostasis.


Assuntos
Adipócitos/metabolismo , Adipocinas/metabolismo , Homeostase/fisiologia , Animais , Cálcio/metabolismo , Drosophila melanogaster , Humanos , Insulina/metabolismo , Gotículas Lipídicas/metabolismo , Fosforilação , Transporte Proteico
20.
Cancer Cell ; 32(5): 624-638.e5, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29056426

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) supports proliferation through parallel induction of key anabolic processes, including protein, lipid, and nucleotide synthesis. We hypothesized that these processes are coupled to maintain anabolic balance in cells with mTORC1 activation, a common event in human cancers. Loss of the tuberous sclerosis complex (TSC) tumor suppressors results in activation of mTORC1 and development of the tumor syndrome TSC. We find that pharmacological inhibitors of guanylate nucleotide synthesis have selective deleterious effects on TSC-deficient cells, including in mouse tumor models. This effect stems from replication stress and DNA damage caused by mTORC1-driven rRNA synthesis, which renders nucleotide pools limiting. These findings reveal a metabolic vulnerability downstream of mTORC1 triggered by anabolic imbalance.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nucleotídeos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Células HCT116 , Células HeLa , Humanos , Immunoblotting , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Nucleotídeos/genética , Interferência de RNA , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Esclerose Tuberosa/genética , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologia , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA