Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Cytometry A ; 105(1): 10-15, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37814476

RESUMO

We have developed a 31-color panel to define the steady-state phenotype of T cells in human peripheral blood (Table 1). The panel presented here was optimized using cryopreserved peripheral blood mononuclear cells (PBMC). The markers included in this panel were chosen in order to characterize the steady-state phenotype of T cells and includes markers (CD45RA, CD45RO, CCR7, CD95) to distinguish the main subsets (e.g., naïve, TEM , TCM , TEMRA , TSCM etc.) of CD4, CD8, and γδ T cells. This panel also includes markers for the identification of differentiation status (CD27, CD28), activation/antigen experience status (CD11a, CD49d, CD38, HLA-DR, CD56, and CD39), co-inhibitory marker expression (PD-1, TIM-3), and CD4 T helper subsets (CXCR3, CXCR5, CCR4, CCR6, Foxp3, CD25, and CD127). This optimized panel provides a broad assessment of the steady-state phenotype of human T cells.


Assuntos
Leucócitos Mononucleares , Linfócitos T , Humanos , Leucócitos Mononucleares/metabolismo , Citometria de Fluxo , Linfócitos T/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Fenótipo , Subpopulações de Linfócitos T
2.
Arterioscler Thromb Vasc Biol ; 43(1): 79-91, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36325902

RESUMO

BACKGROUND: Reactive oxygen species (ROS) contribute to platelet hyperactivation during aging. Several oxidative pathways and antioxidant enzymes have been implicated; however, their mechanistic contributions during aging remain elusive. We hypothesized that mitochondria are an important source of platelet ROS and that mitochondrial SOD2 (superoxide dismutase) protects against mitochondrial ROS-driven platelet activation and thrombosis during aging. METHODS: We studied littermates of platelet-specific SOD2-knockout (SOD2fl/flPf4Cre, pSOD2-KO) and control (SOD2fl/fl) mice at young (4-5 months) or old (18-20 months) ages. We examined agonist-induced platelet activation, platelet-dependent thrombin generation potential, and susceptibility to in vivo thrombosis. RESULTS: Platelet αIIbß3 activation, aggregation, and adhesion were increased to similar extents in aged mice of both genotypes compared with young mice. In contrast, the age-dependent increases in mitochondrial and total cellular ROS, calcium elevation, and phosphatidylserine exposure were augmented in platelets from pSOD2-KO mice compared with control mice. Aged pSOD2-KO mice showed increased platelet-dependent thrombin generation compared with aged control mice. In vivo, aged pSOD2-KO mice exhibited enhanced susceptibility to carotid artery and pulmonary thrombosis compared to aged control mice. Adoptive transfer of platelets from aged pSOD2-KO but not aged control mice increased thrombotic susceptibility in aged host mice, suggesting a prothrombotic effect of platelet pSOD2 deficiency. Treatment with avasopasem manganese (GC4419), a SOD mimetic, decreased platelet mitochondrial pro-oxidants, cellular ROS levels, and inhibited procoagulant platelet formation and arterial thrombosis in aged mice. CONCLUSIONS: Platelet mitochondrial ROS contributes to age-related thrombosis and endogenous SOD2 protects from platelet-dependent thrombin generation and thrombosis during aging.


Assuntos
Trombina , Trombose , Camundongos , Animais , Trombina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos Knockout , Plaquetas/metabolismo , Trombose/genética , Trombose/prevenção & controle , Trombose/induzido quimicamente , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo , Envelhecimento/metabolismo
3.
J Immunol ; 207(1): 322-332, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34145060

RESUMO

The adaptor protein TNFR-associated factor 3 (TRAF3) is required for in vivo T cell effector functions and for normal TCR/CD28 signaling. TRAF3-mediated enhancement of TCR function requires engagement of both CD3 and CD28, but the molecular mechanisms underlying how TRAF3 interacts with and impacts TCR/CD28-mediated complexes to enhance their signaling remains an important knowledge gap. We investigated how TRAF3 is recruited to, and regulates, CD28 as a TCR costimulator. Direct association with known signaling motifs in CD28 was dispensable for TRAF3 recruitment; rather, TRAF3 associated with the CD28-interacting protein linker of activated T cells (LAT) in human and mouse T cells. TRAF3-LAT association required the TRAF3 TRAF-C domain and a newly identified TRAF2/3 binding motif in LAT. TRAF3 inhibited function of the LAT-associated negative regulatory protein Dok1, which is phosphorylated at an inhibitory tyrosine residue by the tyrosine kinase breast tumor kinase (Brk/PTK6). TRAF3 regulated Brk activation in T cells, limiting the association of protein tyrosine phosphatase 1B (PTP1B) with the LAT complex. In TRAF3-deficient cells, LAT complex-associated PTP1B was associated with dephosphorylation of Brk at an activating tyrosine residue, potentially reducing its ability to inhibit Dok1. Consistent with these findings, inhibiting PTP1B activity in TRAF3-deficient T cells rescued basal and TCR/CD28-mediated activation of Src family kinases. These results reveal a new mechanism for promotion of TCR/CD28-mediated signaling through restraint of negative regulation of LAT by TRAF3, enhancing the understanding of regulation of the TCR complex.


Assuntos
Antígenos CD28/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Fator 3 Associado a Receptor de TNF/imunologia , Animais , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais/imunologia , Fator 3 Associado a Receptor de TNF/deficiência , Fator 3 Associado a Receptor de TNF/genética
4.
J Infect Dis ; 225(5): 810-819, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34918095

RESUMO

The pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not completely understood. SARS-CoV-2 infection frequently causes significant immune function consequences including reduced T cell numbers and enhanced T cell exhaustion that contribute to disease severity. The extent to which T cell effects are directly mediated through infection or indirectly result from infection of respiratory-associated cells is unclear. We show that primary human T cells express sufficient levels of angiotensin converting enzyme 2 (ACE-2), the SARS-CoV-2 receptor, to mediate viral binding and entry into T cells. We further show that T cells exposed to SARS-CoV-2 particles demonstrate reduced proliferation and apoptosis compared to uninfected controls, indicating that direct interaction of SARS-CoV-2 with T cells may alter T cell growth, activation, and survival. Regulation of T cell activation and/or turnover by SARS-CoV-2 may contribute to impaired T cell function observed in patients with severe disease.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Linfócitos T/metabolismo , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Viral
5.
J Bacteriol ; 204(9): e0025222, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36005810

RESUMO

Bacterial SPOR domains target proteins to the divisome by binding septal peptidoglycan (PG) at sites where cell wall amidases have removed stem peptides. These PG structures are referred to as denuded glycans. Although all characterized SPOR domains bind denuded glycans, whether there are differences in affinity is not known. Here, we use isothermal titration calorimetry (ITC) to determine the relative PG glycan binding affinity (<i>K</i><sub>d</sub>) of four Escherichia coli SPOR domains and one Cytophaga hutchinsonii SPOR domain. We found that the <i>K</i><sub>d</sub> values ranged from approximately 1 µM for E. coli DamX<sup>SPOR</sup> and <i>C. hutchinsonii</i> CHU2221<sup>SPOR</sup> to about 10 µM for E. coli FtsN<sup>SPOR</sup>. To investigate whether these differences in PG binding affinity are important for SPOR domain protein function, we constructed and characterized a set of DamX and FtsN "swap" proteins. As expected, all SPOR domain swap proteins localized to the division site, and, in the case of FtsN, all of the heterologous SPOR domains supported cell division. However, for DamX, only the high-affinity SPOR domain from CHU2221 supported normal function in cell division. In summary, different SPOR domains bind denuded PG glycans with different affinities, which appears to be important for the functions of some SPOR domain proteins (e.g., DamX) but not for the functions of others (e.g., FtsN). <b>IMPORTANCE</b> SPOR domain proteins are prominent components of the cell division apparatus in a wide variety of bacteria. The primary function of SPOR domains is targeting proteins to the division site, which they accomplish by binding to septal peptidoglycan. However, whether SPOR domains have any functions beyond septal targeting is unknown. Here, we show that SPOR domains vary in their PG binding affinities and that, at least in the case of the E. coli cell division protein DamX, having a high-affinity SPOR domain contributes to proper function.


Assuntos
Proteínas de Escherichia coli , Peptidoglicano , Amidoidrolases/metabolismo , Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Ligação Proteica
6.
J Biol Chem ; 291(16): 8735-44, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26903512

RESUMO

Y-family DNA polymerases, such as polymerase η, polymerase ι, and polymerase κ, catalyze the bypass of DNA damage during translesion synthesis. These enzymes are recruited to sites of DNA damage by interacting with the essential replication accessory protein proliferating cell nuclear antigen (PCNA) and the scaffold protein Rev1. In most Y-family polymerases, these interactions are mediated by one or more conserved PCNA-interacting protein (PIP) motifs that bind in a hydrophobic pocket on the front side of PCNA as well as by conserved Rev1-interacting region (RIR) motifs that bind in a hydrophobic pocket on the C-terminal domain of Rev1. Yeast polymerase η, a prototypical translesion synthesis polymerase, binds both PCNA and Rev1. It possesses a single PIP motif but not an RIR motif. Here we show that the PIP motif of yeast polymerase η mediates its interactions both with PCNA and with Rev1. Moreover, the PIP motif of polymerase η binds in the hydrophobic pocket on the Rev1 C-terminal domain. We also show that the RIR motif of human polymerase κ and the PIP motif of yeast Msh6 bind both PCNA and Rev1. Overall, these findings demonstrate that PIP motifs and RIR motifs have overlapping specificities and can interact with both PCNA and Rev1 in structurally similar ways. These findings also suggest that PIP motifs are a more versatile protein interaction motif than previously believed.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Humanos , Proteínas Nucleares/genética , Nucleotidiltransferases/genética , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
J Nat Prod ; 80(7): 1992-2000, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28621943

RESUMO

Regulator of G Protein Signaling (RGS) 17 is an overexpressed promoter of cancer survival in lung and prostate tumors, the knockdown of which results in decreased tumor cell proliferation in vitro. Identification of drug-like molecules inhibiting this protein could ameliorate the RGS17's pro-tumorigenic effect. Using high-throughput screening, a chemical library containing natural products was interrogated for inhibition of the RGS17-Gαo interaction. Initial hits were verified in control and counter screens. Leads were characterized via biochemical, mass spectrometric, Western blot, microscopic, and cytotoxicity measures. Four known compounds (1-4) were identified with IC50 values ranging from high nanomolar to low micromolar. Three compounds were extensively characterized biologically, demonstrating cellular activity determined by confocal microscopy, and two compounds were assessed via ITC exhibiting high nanomolar to low micromolar dissociation constants. The compounds were found to have a cysteine-dependent mechanism of binding, verified through site-directed mutagenesis and cysteine reactivity assessment. Two compounds, sanguinarine (1) and celastrol (2), were found to be cytostatic against lung and prostate cancer cell lines and cytotoxic against prostate cancer cell lines in vitro, although the dependence of RGS17 on these phenomena remains elusive, a result that is perhaps not surprising given the multimodal cytostatic and cytotoxic activities of many natural products.


Assuntos
Produtos Biológicos/farmacologia , Citostáticos/farmacologia , Citotoxinas/farmacologia , Reguladores de Proteínas de Ligação ao GTP/efeitos dos fármacos , Benzofenantridinas/farmacologia , Produtos Biológicos/química , Citostáticos/química , Citotoxinas/química , Humanos , Isoquinolinas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Estrutura Molecular , Triterpenos Pentacíclicos , Neoplasias da Próstata/tratamento farmacológico , Triterpenos/farmacologia
8.
Biochim Biophys Acta ; 1853(10 Pt A): 2560-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26079855

RESUMO

SH3 domains are evolutionarily conserved protein interaction domains that control nearly all cellular processes in eukaryotes. The current model is that most SH3 domains bind discreet PxxPxR motifs with weak affinity and relatively low selectivity. However, the interactions of full-length SH3 domain-containing proteins with ligands are highly specific and have much stronger affinity. This suggests that regions outside of PxxPxR motifs drive these interactions. In this study, we observed that PxxPxR motifs were required for the binding of the adaptor protein GRB2 to short peptides from its ligand SOS1. Surprisingly, PxxPxR motifs from the proline rich region of SOS1 or CBL were neither necessary nor sufficient for the in vitro or in vivo interaction with full-length GRB2. Together, our findings show that regions outside of the consensus PxxPxR sites drive the high affinity association of GRB2 with SH3 domain ligands, suggesting that the binding mechanism for this and other SH3 domain interactions may be more complex than originally thought.


Assuntos
Proteína Adaptadora GRB2/química , Proteína SOS1/química , Motivos de Aminoácidos , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Humanos , Ligação Proteica/fisiologia , Proteína SOS1/genética , Proteína SOS1/metabolismo , Domínios de Homologia de src
9.
Circ Res ; 115(11): 911-8, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25228390

RESUMO

RATIONALE: Activation of Nox1 initiates redox-dependent signaling events crucial in the pathogenesis of vascular disease. Selective targeting of Nox1 is an attractive potential therapy, but requires a better understanding of the molecular modifications controlling its activation. OBJECTIVE: To determine whether posttranslational modifications of Nox1 regulate its activity in vascular cells. METHODS AND RESULTS: We first found evidence that Nox1 is phosphorylated in multiple models of vascular disease. Next, studies using mass spectroscopy and a pharmacological inhibitor demonstrated that protein kinase C-beta1 mediates phosphorylation of Nox1 in response to tumor necrosis factor-α. siRNA-mediated silencing of protein kinase C-beta1 abolished tumor necrosis factor-α-mediated reactive oxygen species production and vascular smooth muscle cell migration. Site-directed mutagenesis and isothermal titration calorimetry indicated that protein kinase C-beta1 phosphorylates Nox1 at threonine 429. Moreover, Nox1 threonine 429 phosphorylation facilitated the association of Nox1 with the NoxA1 activation domain and was necessary for NADPH oxidase complex assembly, reactive oxygen species production, and vascular smooth muscle cell migration. CONCLUSIONS: We conclude that protein kinase C-beta1 phosphorylation of threonine 429 regulates activation of Nox1 NADPH oxidase.


Assuntos
NADH NADPH Oxirredutases/metabolismo , Proteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Aorta/citologia , Sítios de Ligação , Movimento Celular , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Mutação , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/genética , NADPH Oxidase 1 , Fosforilação , Ligação Proteica , Proteína Quinase C beta/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/química , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Biochem Biophys Res Commun ; 459(3): 405-10, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25735979

RESUMO

Genetically encoded FRET based biosensors allow one to visualize the spatial and temporal evolution of specific enzyme activities in live cells. We have previously reported the creation of a FRET based biosensor specific for Zeta-Associated Protein -70 kD (ZAP-70) (Randriamampita et al., 2008), a Syk family protein tyrosine kinase. ZAP-70 is essential for early T cell receptor (TCR) signaling events, T lymphocyte development and has also been implicated in integrin mediated T lymphocyte migration. In order to facilitate the study of ZAP-70 kinase activity during dynamic phenomena such as immunological synapse formation or cell migration, we have designed and prepared a second generation of ZAP-70 specific biosensors. Here we describe a novel biosensor named ROZA-XL, that displays a 3-4 times greater dynamic range than its predecessor and possesses a robust baseline FRET value when expressed in the Jurkat human T cell line. We demonstrate that the robust behavior of this biosensor allows for rapid analysis of TCR mediated of ZAP-70 kinase activity at a single cell level, as shown in a simple end point assay in which ROZA-XL expressing cells are allowed to interact with stimulatory anti-CD3epsilon coated coverslips.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Linfócitos T/enzimologia , Proteína-Tirosina Quinase ZAP-70/metabolismo , Sequência de Aminoácidos , Corantes Fluorescentes/química , Humanos , Células Jurkat , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Dados de Sequência Molecular , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Transdução de Sinais , Análise de Célula Única/métodos , Linfócitos T/imunologia
11.
J Immunol ; 191(12): 6208-21, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24227778

RESUMO

Focal adhesion kinase (FAK) is a critical regulator of signal transduction in multiple cell types. Although this protein is activated upon TCR engagement, the cellular function that FAK plays in mature human T cells is unknown. By suppressing the function of FAK, we revealed that FAK inhibits TCR-mediated signaling by recruiting C-terminal Src kinase to the membrane and/or receptor complex following TCR activation. Thus, in the absence of FAK, the inhibitory phosphorylation of Lck and/or Fyn is impaired. Together, these data highlight a novel role for FAK as a negative regulator TCR function in human T cells. These results also suggest that changes in FAK expression could modulate sensitivity to TCR stimulation and contribute to the progression of T cell malignancies and autoimmune diseases.


Assuntos
Quinase 1 de Adesão Focal/fisiologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/fisiologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Adolescente , Adulto , Substituição de Aminoácidos , Linfócitos T CD4-Positivos/enzimologia , Proteína Tirosina Quinase CSK , Ativação Enzimática/fisiologia , Feminino , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/deficiência , Quinase 1 de Adesão Focal/genética , Humanos , Células Jurkat , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Complexos Multienzimáticos , Fosforilação , Fosfotirosina/fisiologia , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas Proto-Oncogênicas c-fyn/fisiologia , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Adulto Jovem , Quinases da Família src/metabolismo
12.
J Biol Chem ; 288(17): 12353-65, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23486469

RESUMO

Fission and fusion events dynamically control the shape and function of mitochondria. The activity of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1) is finely tuned by several post-translational modifications. Phosphorylation of Ser-656 by cAMP-dependent protein kinase (PKA) inhibits Drp1, whereas dephosphorylation by a mitochondrial protein phosphatase 2A isoform and the calcium-calmodulin-dependent phosphatase calcineurin (CaN) activates Drp1. Here, we identify a conserved CaN docking site on Drp1, an LXVP motif, which mediates the interaction between the phosphatase and mechanoenzyme. We mutated the LXVP motif in Drp1 to either increase or decrease similarity to the prototypical LXVP motif in the transcription factor NFAT, and assessed stability of the mutant Drp1-CaN complexes by affinity precipitation and isothermal titration calorimetry. Furthermore, we quantified effects of LXVP mutations on Drp1 dephosphorylation kinetics in vitro and in intact cells. With tools for bidirectional control of the CaN-Drp1 signaling axis in hand, we demonstrate that the Drp1 LXVP motif shapes mitochondria in neuronal and non-neuronal cells, and that CaN-mediated Drp1 dephosphorylation promotes neuronal death following oxygen-glucose deprivation. These results point to the CaN-Drp1 complex as a potential target for neuroprotective therapy of ischemic stroke.


Assuntos
Isquemia Encefálica/metabolismo , Dinaminas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Acidente Vascular Cerebral/metabolismo , Motivos de Aminoácidos , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Calcineurina/genética , Calcineurina/metabolismo , Morte Celular , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinaminas/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Fosforilação/genética , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia
13.
EMBO J ; 29(14): 2315-28, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20562827

RESUMO

T-cell antigen receptor (TCR) engagement induces formation of multi-protein signalling complexes essential for regulating T-cell functions. Generation of a complex of SLP-76, Nck and VAV1 is crucial for regulation of the actin machinery. We define the composition, stoichiometry and specificity of interactions in the SLP-76, Nck and VAV1 complex. Our data reveal that this complex can contain one SLP-76 molecule, two Nck and two VAV1 molecules. A direct interaction between Nck and VAV1 is mediated by binding between the C-terminal SH3 domain of Nck and the VAV1 N-terminal SH3 domain. Disruption of the VAV1:Nck interaction deleteriously affected actin polymerization. These novel findings shed new light on the mechanism of actin polymerization after T-cell activation.


Assuntos
Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Oncogênicas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Humanos , Células Jurkat , Ativação Linfocitária , Proteínas Oncogênicas/genética , Fosfoproteínas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-vav/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Domínios de Homologia de src
14.
Sci Rep ; 13(1): 3505, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864087

RESUMO

GRB2 is an adaptor protein required for facilitating cytoplasmic signaling complexes from a wide array of binding partners. GRB2 has been reported to exist in either a monomeric or dimeric state in crystal and solution. GRB2 dimers are formed by the exchange of protein segments between domains, otherwise known as "domain-swapping". Swapping has been described between SH2 and C-terminal SH3 domains in the full-length structure of GRB2 (SH2/C-SH3 domain-swapped dimer), as well as between α-helixes in isolated GRB2 SH2 domains (SH2/SH2 domain-swapped dimer). Interestingly, SH2/SH2 domain-swapping has not been observed within the full-length protein, nor have the functional influences of this novel oligomeric conformation been explored. We herein generated a model of full-length GRB2 dimer with an SH2/SH2 domain-swapped conformation supported by in-line SEC-MALS-SAXS analyses. This conformation is consistent with the previously reported truncated GRB2 SH2/SH2 domain-swapped dimer but different from the previously reported, full-length SH2/C-terminal SH3 (C-SH3) domain-swapped dimer. Our model is also validated by several novel full-length GRB2 mutants that favor either a monomeric or a dimeric state through mutations within the SH2 domain that abrogate or promote SH2/SH2 domain-swapping. GRB2 knockdown and re-expression of selected monomeric and dimeric mutants in a T cell lymphoma cell line led to notable defects in clustering of the adaptor protein LAT and IL-2 release in response to TCR stimulation. These results mirrored similarly-impaired IL-2 release in GRB2-deficient cells. These studies show that a novel dimeric GRB2 conformation with domain-swapping between SH2 domains and monomer/dimer transitions are critical for GRB2 to facilitate early signaling complexes in human T cells.


Assuntos
Interleucina-2 , Domínios de Homologia de src , Humanos , Dimerização , Espalhamento a Baixo Ângulo , Linfócitos T , Difração de Raios X , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Polímeros , Proteína Adaptadora GRB2/genética
15.
ACS Nano ; 17(15): 14586-14603, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37463491

RESUMO

It has been shown that inhalation exposure to copper oxide nanoparticles (CuO NPs) results in pulmonary inflammation. However, immunomodulatory consequences after CuO NP inhalation exposure have been less explored. We tested the effect of CuO NP aerosols on immune responses in healthy, house dust mite (HDM) asthmatic, or allergen immunotherapy (AIT)-treated asthmatic mice (BALB/c, females). The AIT consisted of a vaccine comprising HDM allergens and CpG-loaded nanoparticles (CpG NPs). AIT treatment involved mice being immunized (via subcutaneous (sc) injection; 2 doses) while concomitantly being exposed to CuO NP aerosols (over a 2 week period), starting on the day of the first vaccination. Mice were then sensitized twice by sc injection and subsequently challenged with HDM extract 10 times by intranasal instillation. The asthmatic model followed the same timeline except that no immunizations were administered. All mice were necropsied 24 h after the end of the HDM challenge. CuO NP-exposed healthy mice showed a significant decrease in TH1 and TH2 cells, and an elevation in T-bet+ Treg cells, even 40 days after the last exposure to CuO NPs. Similarly, the CuO NP-exposed HDM asthma model demonstrated decreased TH2 responses and increased T-bet+ Treg cells. Conversely, CuO NP inhalation exposure to AIT-treated asthmatic mice resulted in an increase in TH2 cells. In conclusion, immunomodulatory effects of inhalation exposure to CuO NPs are dependent on immune conditions prior to exposure.


Assuntos
Asma , Nanopartículas , Feminino , Camundongos , Animais , Cobre , Exposição por Inalação , Asma/induzido quimicamente , Asma/terapia , Pyroglyphidae , Imunidade , Óxidos
16.
Sci Rep ; 12(1): 13506, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931746

RESUMO

Glycerol monolaurate (GML) is a naturally occurring antimicrobial agent used commercially in numerous products and food items. GML is also used as a homeopathic agent and is being clinically tested to treat several human diseases. In addition to its anti-microbial function, GML suppresses immune cell proliferation and inhibits primary human T cell activation. GML suppresses T cell activation by altering membrane dynamics and disrupting the formation of protein clusters necessary for intracellular signaling. The ability of GML to disrupt cellular membranes suggests it may alter other cell types. To explore this possibility, we tested how GML affects human B cells. We found that GML inhibits BCR-induced cytokine production, phosphorylation of signaling proteins, and protein clustering, while also changing cellular membrane dynamics and dysregulating cytoskeleton rearrangement. Although similar, there are also differences between how B cells and T cells respond to GML. These differences suggest that unique intrinsic features of a cell may result in differential responses to GML treatment. Overall, this study expands our understanding of how GML impacts the adaptive immune response and contributes to a broader knowledge of immune modulating monoglycerides.


Assuntos
Lauratos , Monoglicerídeos , Humanos , Lauratos/farmacologia , Ativação Linfocitária , Monoglicerídeos/metabolismo , Monoglicerídeos/farmacologia , Linfócitos T/metabolismo
17.
Front Immunol ; 13: 989000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072595

RESUMO

Pharmacological ascorbate (i.e., intravenous infusions of vitamin C reaching ~ 20 mM in plasma) is under active investigation as an adjuvant to standard of care anti-cancer treatments due to its dual redox roles as an antioxidant in normal tissues and as a prooxidant in malignant tissues. Immune checkpoint inhibitors (ICIs) are highly promising therapies for many cancer patients but face several challenges including low response rates, primary or acquired resistance, and toxicity. Ascorbate modulates both innate and adaptive immune functions and plays a key role in maintaining the balance between pro and anti-inflammatory states. Furthermore, the success of pharmacological ascorbate as a radiosensitizer and a chemosensitizer in pre-clinical studies and early phase clinical trials suggests that it may also enhance the efficacy and expand the benefits of ICIs.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapêutico , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia , Neoplasias/tratamento farmacológico
18.
Eur J Immunol ; 40(9): 2618-31, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20662096

RESUMO

NK cell-mediated resistance to murine cytomegalovirus (MCMV) is controlled by allelic Ly49 receptors, including activating Ly49H (C57BL/6 strain) and inhibitory Ly49I (129 strain), which specifically recognize MCMV m157, a glycosylphosphatidylinositol-linked protein with homology to MHC class I. Although the Ly49 receptors retain significant homology to classic carbohydrate-binding lectins, the role of glycosylation in ligand binding is unclear. Herein, we show that m157 is expressed in multiple, differentially N-glycosylated isoforms in m157-transduced or MCMV-infected cells. We used site-directed mutagenesis to express single and combinatorial asparagine (N)-to-glutamine (Q) mutations at N178, N187, N213, and N267 in myeloid and fibroblast cell lines. Progressive loss of N-linked glycans led to a significant reduction of total cellular m157 abundance, although all variably glycosylated m157 isoforms were expressed at the cell surface and retained the capacity to activate Ly49H(B6) and Ly49I(129) reporter cells and Ly49H(+) NK cells. However, the complete lack of N-linked glycans on m157 destabilized the m157-Ly49H interaction and prevented physical transfer of m157 to Ly49H-expressing cells. Thus, glycosylation on m157 enhances expression and binding to Ly49H, factors that may impact the interaction between NK cells and MCMV in vivo where receptor-ligand interactions are more limiting.


Assuntos
Fibroblastos/metabolismo , Infecções por Herpesviridae/metabolismo , Muromegalovirus/imunologia , Células Mieloides/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Fibroblastos/imunologia , Fibroblastos/patologia , Glicosilação , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Ativação Linfocitária/genética , Camundongos , Muromegalovirus/patogenicidade , Mutagênese Sítio-Dirigida , Mutação/genética , Células Mieloides/imunologia , Células Mieloides/patologia , Subfamília A de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Ligação Proteica/genética , Isoformas de Proteínas/genética , Transgenes/genética , Proteínas Virais/genética , Proteínas Virais/imunologia
19.
FASEB J ; 24(4): 1271-83, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20007511

RESUMO

Integrity of animal biomembranes is critical to preserve normal cellular functions and viability. Phosphatidylcholine, an indispensible membrane component, requires the enzyme CCTalpha for its biosynthesis. Nuclear expression of CCTalpha is needed for expansion of the nuclear membrane network, but mechanisms for CCTalpha nuclear import are unknown. Herein, we show that in epithelia, extracellular Ca(2+) triggers CCTalpha cytoplasmic-nuclear translocation. CCTalpha nuclear import was associated with binding to 14-3-3zeta, a key regulator of protein trafficking. 14-3-3zeta was both sufficient and required for CCTalpha nuclear import. Helix G within the 14-3-3zeta binding groove interacts with a putative molecular signature within the CCTalpha carboxyl-terminal phosphoserine motif (residues 328-343). 14-3-3zeta was critically involved in preserving phosphatidylcholine synthesis and cell viability in a model of Pseudomonas aeruginosa infection where Ca(2+) concentrations increase within epithelia. Thus, 14-3-3zeta controls CCTalpha nuclear import in response to calcium signals, thereby regulating mammalian phospholipid synthesis. Agassandian, M., Chen, B. B., Schuster, C. C., Houtman, J. C. D., Mallampalli, R. K. 14-3-3zeta escorts CCTalpha for calcium-activated nuclear import in lung epithelia.


Assuntos
Proteínas 14-3-3/metabolismo , Sinalização do Cálcio , Colina-Fosfato Citidililtransferase/metabolismo , Pulmão/metabolismo , Membrana Nuclear/metabolismo , Fosfatidilcolinas/biossíntese , Mucosa Respiratória/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Cálcio/metabolismo , Pulmão/microbiologia , Camundongos , Modelos Biológicos , Ligação Proteica , Estrutura Secundária de Proteína , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa , Mucosa Respiratória/microbiologia
20.
Nat Struct Mol Biol ; 13(9): 798-805, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16906159

RESUMO

Receptor oligomerization is vital for activating intracellular signaling, in part by initiating events that recruit effector and adaptor proteins to sites of active signaling. Whether these distal molecules themselves oligomerize is not well appreciated. In this study, we examined the molecular interactions of the adaptor protein GRB2. In T cells, the SH2 domain of GRB2 binds phosphorylated tyrosines on the adaptor protein LAT and the GRB2 SH3 domains associate with the proline-rich regions of SOS1 and CBL. Using biochemical and biophysical techniques in conjunction with confocal microscopy, we observed that the simultaneous association of GRB2, via its SH2 and SH3 domains, with multivalent ligands led to the oligomerization of these ligands, which affected signaling. These data suggest that multipoint binding of distal adaptor proteins mediates the formation of oligomeric signaling clusters vital for intracellular signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Adaptadora GRB2/metabolismo , Proteínas de Membrana/metabolismo , Estrutura Quaternária de Proteína , Proteína SOS1/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Proteína Adaptadora GRB2/química , Humanos , Células Jurkat , Ligantes , Proteínas de Membrana/química , Modelos Biológicos , Dados de Sequência Molecular , Fosfopeptídeos/metabolismo , Prolina/metabolismo , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Proteína SOS1/química , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA