RESUMO
Obesity-related diseases (e.g. type 2 diabetes mellitus and cardiovascular disorders) represent an increasing health problem worldwide. NLRP3 inflammasome activation may underlie obesity-induced inflammation and insulin resistance, and NLRP3 deficient mice exposed to high fat diet (HFD) appear to be protected from left ventricle (LV) concentric remodeling. Herein, we investigated if these beneficial effects were associated with alterations in plasma metabolites, using metabolomic and lipidomic analysis, and gut microbiota composition, using 16S rRNA sequencing of cecum content, comparing NLRP3 deficient and wild type (WT) mice on HFD and control diet. Obese NLRP3 deficient mice had lower systemic ceramide levels, potentially resulting attenuating inflammation, altered hepatic expression of fatty acids (FA) with lower mono-saturated FA and higher polyunsaturated FA levels, potentially counteracting development of liver steatosis, downregulated myocardial energy metabolism as assessed by proteomic analyses of LV heart tissue, and different levels of bile acids as compared with WT mice. These changes were accompanied by an altered composition of gut microbiota associated with decreased systemic levels of tri-methylamine-N-oxide and lipopolysaccharide, potentially inducing attenuating systemic inflammation and beneficial effects on lipid metabolism. Our findings support a role of NLRP3 inflammasome in the interface between metabolic and inflammatory stress, involving an altered gut microbiota composition.
Assuntos
Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal , Metaboloma , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Ceramidas/sangue , Metabolismo Energético , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Lipopolissacarídeos/sangue , Fígado/metabolismo , Masculino , Metilaminas/sangue , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR/genéticaRESUMO
BACKGROUND AND PURPOSE: γ-butyrobetaine (γBB) is a metabolite from dietary Carnitine, involved in the gut microbiota-dependent conversion from Carnitine to the pro-atherogenic metabolite trimethylamine-N-oxide (TMAO). Orally ingested γBB has a pro-atherogenic effect in experimental studies, but γBB has not been studied in relation to atherosclerosis in humans. The aim of this study was to evaluate associations between serum levels of γBB, TMAO and their common precursors Carnitine and trimethyllysine (TML) and carotid atherosclerosis and adverse outcome. METHODS: Serum γBB, Carnitine, TML and TMAO were quantified by high performance liquid chromatography in patients with carotid artery atherosclerosis (n = 264) and healthy controls (n = 62). RESULTS: Serum γBB (p = 0.024) and Carnitine (p = 0.001), but not TMAO or TML, were increased in patients with carotid atherosclerosis. Higher levels of γBB and TML, but not TMAO or Carnitine were independently associated with cardiovascular death also after adjustment for age and eGFR (adjusted HR [95%] 3.3 [1.9-9.1], p = 0.047 and 6.0 [1.8-20.34], p = 0.026, respectively). CONCLUSIONS: Patients with carotid atherosclerosis had increased serum levels of γBB, and elevated levels of γBB and its precursor TML were associated with cardiovascular mortality. Long-term clinical studies of γBB, as a cardiovascular risk marker, and safety studies regarding dietary supplementation of γBB, are warranted.