RESUMO
BET inhibition has been shown to have a promising antitumor effect in multiple tumors. However, the impact of BET inhibition on antitumor immunity was still not well documented in HNSCC. In this study, we aim to assess the functional role of BET inhibition in antitumor immunity and clarify its mechanism. We show that BRD4 is highly expressed in HNSCC and inversely correlated with the infiltration of CD8+ T cells. BET inhibition potentiates CD8+ T cell-based antitumor immunity in vitro and in vivo. Mechanistically, BRD4 acts as a transcriptional suppressor and represses the expression of MHC class I molecules by recruiting G9a. Pharmacological inhibition or genetic depletion of BRD4 potently increases the expression of MHC class I molecules in the absence and presence of IFN-γ. Moreover, compared to PD-1 blocking antibody treatment or JQ1 treatment individually, the combination of BET inhibition with anti-PD-1 antibody treatment significantly enhances the antitumor response in HNSCC. Taken together, our data unveil a novel mechanism by which BET inhibition potentiates antitumor immunity via promoting the expression of MHC class I molecules and provides a rationale for the combination of ICBs with BET inhibitors for HNSCC treatment.
Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Linfócitos T CD8-Positivos , Proteínas Nucleares/genética , Linhagem Celular Tumoral , Fatores de Transcrição/genética , Antígenos de Histocompatibilidade Classe I/genética , Proteínas de Ciclo CelularRESUMO
During infection, cellular resources are allocated toward the metabolically-demanding processes of synthesizing and secreting effector proteins that neutralize and kill invading pathogens. In Drosophila, these effectors are antimicrobial peptides (AMPs) that are produced in the fat body, an organ that also serves as a major lipid storage depot. Here we asked how activation of Toll signaling in the larval fat body perturbs lipid homeostasis to understand how cells meet the metabolic demands of the immune response. We find that genetic or physiological activation of fat body Toll signaling leads to a tissue-autonomous reduction in triglyceride storage that is paralleled by decreased transcript levels of the DGAT homolog midway, which carries out the final step of triglyceride synthesis. In contrast, Kennedy pathway enzymes that synthesize membrane phospholipids are induced. Mass spectrometry analysis revealed elevated levels of major phosphatidylcholine and phosphatidylethanolamine species in fat bodies with active Toll signaling. The ER stress mediator Xbp1 contributed to the Toll-dependent induction of Kennedy pathway enzymes, which was blunted by deleting AMP genes, thereby reducing secretory demand elicited by Toll activation. Consistent with ER stress induction, ER volume is expanded in fat body cells with active Toll signaling, as determined by transmission electron microscopy. A major functional consequence of reduced Kennedy pathway induction is an impaired immune response to bacterial infection. Our results establish that Toll signaling induces a shift in anabolic lipid metabolism to favor phospholipid synthesis and ER expansion that may serve the immediate demand for AMP synthesis and secretion but with the long-term consequence of insufficient nutrient storage.
Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Infecções por Bactérias Gram-Positivas/imunologia , Imunidade Inata , Metabolismo dos Lipídeos/imunologia , Animais , Animais Geneticamente Modificados , Peptídeos Catiônicos Antimicrobianos/genética , Colina-Fosfato Citidililtransferase/genética , Colina-Fosfato Citidililtransferase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/imunologia , Enterococcus faecalis/imunologia , Corpo Adiposo/enzimologia , Corpo Adiposo/imunologia , Feminino , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Larva/enzimologia , Larva/imunologia , Metabolismo dos Lipídeos/genética , Masculino , Fosfolipídeos/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptores Toll-Like/metabolismo , Triglicerídeos/metabolismoRESUMO
Previously, we discovered that FOSL1 facilitates the metastasis of head and neck squamous cell carcinoma (HNSCC) cancer stem cells in a spontaneous mouse model. However, the molecular mechanisms remained unclear. Here, we demonstrated that FOSL1 serves as the dominant activating protein 1 (AP1) family member and is significantly upregulated in HNSCC tumor tissues and correlated with metastasis of HNSCC. Mechanistically, FOSL1 exerts its function in promoting tumorigenicity and metastasis predominantly via selective association with Mediators to establish super-enhancers (SEs) at a cohort of cancer stemness and pro-metastatic genes, such as SNAI2 and FOSL1 itself. Depletion of FOSL1 led to disruption of SEs and expression inhibition of these key oncogenes, which resulted in the suppression of tumor initiation and metastasis. We also revealed that the abundance of FOSL1 is positively associated with the abundance of SNAI2 in HNSCC and the high expression levels of FOSL1 and SNAI2 are associated with short overall disease-free survival. Finally, the administration of the FOSL1 inhibitor SR11302 significantly suppressed tumor growth and lymph node metastasis of HNSCC in a patient-derived xenograft model. These findings indicate that FOSL1 is a master regulator that promotes the metastasis of HNSCC through a SE-driven transcription program that may represent an attractive target for therapeutic interventions.
Assuntos
Elementos Facilitadores Genéticos , Neoplasias de Cabeça e Pescoço/patologia , Proteínas Proto-Oncogênicas c-fos/genética , Fatores de Transcrição da Família Snail/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Metástase Neoplásica , Proteínas Proto-Oncogênicas c-fos/metabolismo , Retinoides/farmacologia , Retinoides/uso terapêutico , Fatores de Transcrição da Família Snail/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
It has been demonstrated that the KDM3 family of histone demethylases (KDM3A and KDM3B) epigenetically control the functional properties of colorectal cancer stem cells (CSCs) through Wnt/ß-catenin signaling. Meanwhile, a broad-spectrum histone demethylase inhibitor, IOX1, suppresses Wnt-induced colorectal tumorigenesis predominantly through inhibiting the enzymatic activity of KDM3. In this work, several cereblon (CRBN)-recruiting PROTACs with various linker lengths were designed and synthesized using IOX1 as a warhead to target KDM3 proteins for degradation. Two of the synthesized PROTACs demonstrated favorable degradation profile and selectivity towards KDM3A and KDM3B. Compound 4 demonstrated favorable in vitro metabolic profile in liver enzymes as well as no hERG-associated cardiotoxicity. Compound 4 also showed dramatic ability in suppressing oncogenic Wnt signaling to eliminate colorectal CSCs and inhibit tumor growth, with around 10- to 35-fold increased potency over IOX1. In summary, this study suggests that PROTACs provide a unique molecular tool for the development of novel small molecules from the IOX1 skeleton for selective degradation of KDM3 to eliminate colorectal CSCs via suppressing oncogenic Wnt signaling.
RESUMO
The interferon signaling pathway is critical for host defense by serving diverse functions in both innate and adaptive immune responses. Here, we show that type I gamma phosphatidylinositol phosphate 5-kinase i5 (PIPKIγi5), an enzyme that synthesizes phosphatidylinositol-4,5-bisphosphate (PI4,5P2), controls the sensitivity to interferon in both human and mouse cells. PIPKIγi5 directly binds to the interferon-gamma (IFN-γ) downstream effector signal transducer and activator of transcription 1 (STAT1), which suppresses the STAT1 dimerization, IFN-γ-induced STAT1 nuclear translocation, and transcription of IFN-γ-responsive genes. Depletion of PIPKIγi5 significantly enhances IFN-γ signaling and strengthens an antiviral response. In addition, PIPKIγi5-synthesized PI4,5P2 can bind to STAT1 and promote the PIPKIγi5-STAT1 interaction. Similar to its interaction with STAT1, PIPKIγi5 is capable of interacting with other members of the STAT family, including STAT2 and STAT3, thereby suppressing the expression of genes mediated by these transcription factors. These findings identify the function of PIPKIγi5 in immune regulation.
Assuntos
Interferon gama , Fosfotransferases (Aceptor do Grupo Álcool) , Transdução de Sinais , Animais , Humanos , Camundongos , Células HEK293 , Interferon gama/metabolismo , Interferon gama/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ligação Proteica , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genéticaRESUMO
Tumor budding (TB) is a small tumor cell cluster with highly aggressive behavior located ahead of the invasive tumor front. However, the molecular and biological characteristics of TB and the regulatory mechanisms governing TB phenotypes remain unclear. This study reveals that TB exhibits a particular dynamic gene signature with stemness and partial epithelial-mesenchymal transition (p-EMT). Importantly, nuclear expression of CYTOR is identified to be the key regulator governing stemness and the p-EMT phenotype of TB cells, and targeting CYTOR significantly inhibits TB formation, tumor growth and lymph node metastasis in head and neck squamous cell carcinoma (HNSCC). Mechanistically, CYTOR promotes tumorigenicity and metastasis of TB cells by facilitating the formation of FOSL1 phase-separated condensates to establish FOSL1-dependent super enhancers (SEs). Depletion of CYTOR leads to the disruption of FOSL1-dependent SEs, which results in the inactivation of cancer stemness and pro-metastatic genes. In turn, activation of FOSL1 promotes the transcription of CYTOR. These findings indicate that CYTOR is a super-lncRNA that controls the stemness and metastasis of TB cells through facilitating the formation of FOSL1 phase separation and SEs, which may be an attractive target for therapeutic interventions in HNSCC.
Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/genética , Separação de Fases , Super Intensificadores , Transição Epitelial-Mesenquimal/genéticaRESUMO
Accumulating evidence shows that PD-L1 expression on dendritic cells (DC) is critical for cancer immunotherapy and that Porphyromonas gingivalis (Pg) colonization aggravates the progression of upper gastrointestinal cancers. However, the effects of Pg infection on PD-L1 expression on DCs and related immune consequences in the infection milieu of oral cancer remain unexplored. Here, we found that Pg infection robustly enhanced PD-L1 expression on DCs in a gingipain-dependent manner in cultured cell and systemic infection assays. Pg infection suppressed antigen-specific CD8+ T cells through upregulation of PD-L1 expression on ovalbumin (OVA)-pulsed DCs. This suppression was manifested by decreased IFNγ, perforin, granzyme B, and CD107a. Further analysis showed that Pg drastically reduced CD8+ T cells' ability to lyse OVA-pulsed target cells. Additionally, Pg infection increased the phosphorylation of Akt and STAT3, leading to a significant increase in PD-L1 expression. This was substantiated by using siRNA, overexpression plasmids, and pharmacologic inhibitors. Consistent with the in vitro observations, in a syngeneic mouse oral cancer model, Pg infection significantly enhanced PD-L1 expression on DCs from intratumoral tissues and cervical lymph nodes and exacerbated oral cancer progression, whereas a Pg lysine-specific, gingipain-defective mutant failed to do so. These influences of Pg were largely diminished when tumor cells were pretreated with antibiotics or a STAT3 inhibitor. Therefore, we demonstrated that Pg infection upregulates PD-L1 expression on DCs through Akt-STAT3 signaling, suppresses CD8+ T-cell cytotoxicity, and aggravates oral cancer growth, suggesting targeting Pg, and/or its mediated signaling, could be a therapeutic strategy to improve the efficacy of checkpoint blockade immunotherapy.
Assuntos
Antígeno B7-H1 , Neoplasias Bucais , Animais , Camundongos , Cisteína Endopeptidases Gingipaínas/metabolismo , Cisteína Endopeptidases Gingipaínas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linfócitos T CD8-Positivos , Células DendríticasRESUMO
Emerging evidence indicates that the cellular electromagnetic field regulates the fundamental physics of cell biology. The electromagnetic oscillations and synchronization of biomolecules triggered by the internal and external pulses serve as the physical basis of the cellular electromagnetic field. Recent studies have indicated that centrosomes, a small organelle in eukaryotic cells that organize spindle microtubules during mitosis, also function as a nano-electronic generator in cells. Additionally, cellular electromagnetic fields are defined by cell types and correlated to the epigenetic status of the cell. These interactions between tissue-specific electromagnetic fields and chromatin fibers of progenitor cells regulate cell differentiation and organ sizes. The same mechanism is implicated in the regulation of tissue homeostasis and morphological adaptation in evolution. Intercellular electromagnetic interactions also regulate the migratory behaviors of cells and the morphogenesis programs of neural circuits. The process is closely linked with centrosome function and intercellular communication of the electromagnetic fields of microtubule filaments. Clearly, more and more evidence has shown the importance of cellular electromagnetic fields in regulatory processes. Furthermore, a detailed understanding of the physical nature of the inter- and intracellular electromagnetic interactions will better our understanding of fundamental biological questions and a wide range of biological processes.
RESUMO
Epigenetic activation of Wnt/ß-catenin signaling plays a critical role in Wnt-induced tumorigenesis, notably in colorectal cancers. KDM3 and KDM4 histone demethylases have been reported to promote oncogenic Wnt signaling through demethylation of H3K9 on Wnt target gene promoters and are suggested to be potential therapeutic targets. However, potent inhibitors for these regulators are still not available. In addition, which family is most responsible for activation of Wnt target genes and Wnt-induced oncogenesis is not well documented, specifically in colorectal cancer. In this study, we characterized the functional redundancy and differences between KDM3 and KDM4 in regard to regulating Wnt signaling. Our data suggest that KDM3 may play a more essential role than KDM4 in regulating oncogenic Wnt signaling in human colorectal cancer. We also identified that IOX1, a known histone demethylase inhibitor, significantly suppresses Wnt target gene transcription and colorectal cancer tumorigenesis. Mechanistically, IOX1 inhibits the enzymatic activity of KDM3 by binding to the Jumonji C domain and thereby preventing the demethylation of H3K9 on Wnt target gene promoters. Taken together, our data not only identified the critical mechanisms by which IOX1 suppressed Wnt/ß-catenin signaling and colorectal cancer tumorigenesis through inhibition of KDM3, but also suggested that IOX1 may represent an attractive small molecule lead for future drug design and discovery.
Assuntos
Carcinogênese/genética , Neoplasias Colorretais/genética , Hidroxiquinolinas/farmacologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Proteínas Wnt/metabolismo , Animais , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos Nus , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genéticaRESUMO
Programmed death ligand 1 (PD-L1) is critical for the ability of cancer cells to evade attacks by the host immune system. However, the molecular mechanisms controlling PD-L1 expression have not been fully understood. Here, we demonstrate that sorting nexin 6 (SNX6) is a novel regulator of PD-L1 expression. Knockdown of SNX6 in cancer cells significantly decreases PD-L1 protein levels. In contrast, loss of SNX6 does not reduce PD-L1 mRNA levels. Instead, SNX6 interacts with Cullin3, an E3 ubiquitin ligase responsible for PD-L1 ubiquitination and subsequent degradation. By binding with Cullin3, SNX6 decreases the interaction between the adaptor protein speckle-type POZ protein and Cullin3, which in turn downregulates Cullin3-mediated PD-L1 ubiquitination. This research reveals a novel molecular nexus in modulating PD-L1.
Assuntos
Antígeno B7-H1/metabolismo , Proteínas Culina/metabolismo , Nexinas de Classificação/metabolismo , Antígeno B7-H1/genética , Humanos , Células Jurkat , Neoplasias/imunologia , Ligação Proteica , Nexinas de Classificação/genética , Linfócitos T/imunologia , UbiquitinaçãoRESUMO
MiR-21-5p is one of the most common oncogenic miRNAs that is upregulated in many solid cancers by inhibiting its target genes at the posttranscriptional level. However, the upstream regulatory mechanisms of miR-21-5p are still not well documented in cancers. Here, we identify a super-enhancer associated with the MIR21 gene (MIR21-SE) by analyzing the MIR21 genomic regulatory landscape in head and neck squamous cell carcinoma (HNSCC). We show that the MIR21-SE regulates miR-21-5p expression in different HNSCC cell lines and disruption of MIR21-SE inhibits miR-21-5p expression. We also identified that a key transcription factor, FOSL1 directly controls miR-21-5p expression by interacting with the MIR21-SE in HNSCC. Moreover, functional studies indicate that restoration of miR-21-5p partially abrogates FOSL1 depletion-mediated inhibition of cell proliferation and invasion. Clinical studies confirmed that miR-21-5p expression is positively correlated with FOSL1 expression. These findings suggest that FOSL1-SE drives miR-21-5p expression to promote malignant progression of HNSCC.