Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Lett ; 22(11): 1940-1956, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31359571

RESUMO

Knowing where species occur is fundamental to many ecological and environmental applications. Species distribution models (SDMs) are typically based on correlations between species occurrence data and environmental predictors, with ecological processes captured only implicitly. However, there is a growing interest in approaches that explicitly model processes such as physiology, dispersal, demography and biotic interactions. These models are believed to offer more robust predictions, particularly when extrapolating to novel conditions. Many process-explicit approaches are now available, but it is not clear how we can best draw on this expanded modelling toolbox to address ecological problems and inform management decisions. Here, we review a range of process-explicit models to determine their strengths and limitations, as well as their current use. Focusing on four common applications of SDMs - regulatory planning, extinction risk, climate refugia and invasive species - we then explore which models best meet management needs. We identify barriers to more widespread and effective use of process-explicit models and outline how these might be overcome. As well as technical and data challenges, there is a pressing need for more thorough evaluation of model predictions to guide investment in method development and ensure the promise of these new approaches is fully realised.


Assuntos
Clima , Ecossistema , Mudança Climática , Demografia , Previsões , Modelos Biológicos
2.
Mov Ecol ; 8: 18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391154

RESUMO

BACKGROUND: Where mesopredators co-exist with dominant apex predators, an understanding of the factors that influence their habitat and space use can provide insights that help guide wildlife conservation and pest management actions. A predator's habitat use is defined by its home range, which is influenced by its selection or avoidance of habitat features and intra- and inter-specific interactions within the landscape. These are driven by both innate and learned behaviour, operating at different spatial scales. We examined the seasonal home ranges and habitat selection of actively-managed populations of a native apex predator (dingo Canis dingo) and invasive mesopredator (feral cat Felis catus) in semi-arid Western Australia to better understanding their sympatric landscape use, potential interactions, and to help guide their management. METHODS: We used kernel density estimates to characterise the seasonal space use of dingoes and feral cats, investigate inter- and intra-species variation in their home range extent and composition, and examine second-order habitat selection for each predator. Further, we used discrete choice modelling and step selection functions to examine the difference in third-order habitat selection across several habitat features. RESULTS: The seasonal home ranges of dingoes were on average 19.5 times larger than feral cats. Feral cat seasonal home ranges typically included a larger proportion of grasslands than expected relative to availability in the study site, indicating second-order habitat selection for grasslands. In their fine-scale movements (third-order habitat selection), both predators selected for roads, hydrological features (seasonal intermittent streams, seasonal lakes and wetlands), and high vegetation cover. Dingoes also selected strongly for open woodlands, whereas feral cats used open woodlands and grasslands in proportion to availability. MANAGEMENT RECOMMENDATIONS: Based on these results, and in order to avoid unintended negative ecological consequences (e.g. mesopredator release) that may stem from non-selective predator management, we recommend that feral cat control focuses on techniques such as trapping and shooting that are specific to feral cats in areas where they overlap with apex predators (dingoes), and more general techniques such as poison baiting where they are segregated.

3.
Sci Rep ; 7(1): 12291, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947832

RESUMO

Invasive and over-abundant predators pose a major threat to biodiversity and often benefit from human activities. Effective management requires understanding predator use of human-modified habitats (including resource subsidies and disturbed environments), and individual variation within populations. We investigated selection for human-modified habitats by invasive red foxes, Vulpes vulpes, within two predominantly forested Australian landscapes. We predicted that foxes would select for human-modified habitats in their range locations and fine-scale movements, but that selection would vary between individuals. We GPS-tracked 19 foxes for 17-166 days; ranges covered 33 to >2500 ha. Approximately half the foxes selected for human-modified habitats at the range scale, with some 'commuting' more than five kilometres to farmland or townships at night. Two foxes used burnt forest intensively after a prescribed fire. In their fine-scale nocturnal movements, most foxes selected for human-modified habitats such as reservoirs, forest edges and roads, but there was considerable individual variation. Native fauna in fragmented and disturbed habitats are likely to be exposed to high rates of fox predation, and anthropogenic food resources may subsidise fox populations within the forest interior. Coordinating fox control across land-tenures, targeting specific landscape features, and limiting fox access to anthropogenic resources will be important for biodiversity conservation.


Assuntos
Conservação dos Recursos Naturais , Florestas , Espécies Introduzidas/tendências , Comportamento Predatório , Animais , Austrália , Feminino , Raposas , Sistemas de Informação Geográfica , Espécies Introduzidas/estatística & dados numéricos , Masculino , Dinâmica Populacional/estatística & dados numéricos , Dinâmica Populacional/tendências , Tecnologia de Sensoriamento Remoto , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA