Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 132(10): 1405-1424, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37167356

RESUMO

SARS-CoV-2, the virus underlying COVID-19, has now been recognized to cause multiorgan disease with a systemic effect on the host. To effectively combat SARS-CoV-2 and the subsequent development of COVID-19, it is critical to detect, monitor, and model viral pathogenesis. In this review, we discuss recent advancements in microfluidics, organ-on-a-chip, and human stem cell-derived models to study SARS-CoV-2 infection in the physiological organ microenvironment, together with their limitations. Microfluidic-based detection methods have greatly enhanced the rapidity, accessibility, and sensitivity of viral detection from patient samples. Engineered organ-on-a-chip models that recapitulate in vivo physiology have been developed for many organ systems to study viral pathology. Human stem cell-derived models have been utilized not only to model viral tropism and pathogenesis in a physiologically relevant context but also to screen for effective therapeutic compounds. The combination of all these platforms, along with future advancements, may aid to identify potential targets and develop novel strategies to counteract COVID-19 pathogenesis.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Microfluídica , Sistemas Microfisiológicos
2.
Nat Methods ; 18(5): 551-556, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33574612

RESUMO

Light-field microscopy has emerged as a technique of choice for high-speed volumetric imaging of fast biological processes. However, artifacts, nonuniform resolution and a slow reconstruction speed have limited its full capabilities for in toto extraction of dynamic spatiotemporal patterns in samples. Here, we combined a view-channel-depth (VCD) neural network with light-field microscopy to mitigate these limitations, yielding artifact-free three-dimensional image sequences with uniform spatial resolution and high-video-rate reconstruction throughput. We imaged neuronal activities across moving Caenorhabditis elegans and blood flow in a beating zebrafish heart at single-cell resolution with volumetric imaging rates up to 200 Hz.


Assuntos
Caenorhabditis elegans/fisiologia , Aprendizado Profundo , Coração/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Animais , Comportamento Animal , Fenômenos Biomecânicos , Atividade Motora/fisiologia , Neurônios/fisiologia , Peixe-Zebra
3.
PLoS Comput Biol ; 17(7): e1009175, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34228702

RESUMO

Biomechanical forces intimately contribute to cardiac morphogenesis. However, volumetric imaging to investigate the cardiac mechanics with high temporal and spatial resolution remains an imaging challenge. We hereby integrated light-field microscopy (LFM) with light-sheet fluorescence microscopy (LSFM), coupled with a retrospective gating method, to simultaneously access myocardial contraction and intracardiac blood flow at 200 volumes per second. While LSFM allows for the reconstruction of the myocardial function, LFM enables instantaneous acquisition of the intracardiac blood cells traversing across the valves. We further adopted deformable image registration to quantify the ventricular wall displacement and particle tracking velocimetry to monitor intracardiac blood flow. The integration of LFM and LSFM enabled the time-dependent tracking of the individual blood cells and the differential rates of segmental wall displacement during a cardiac cycle. Taken together, we demonstrated a hybrid system, coupled with our image analysis pipeline, to simultaneously capture the myocardial wall motion with intracardiac blood flow during cardiac development.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Coração , Animais , Biologia Computacional , Embrião não Mamífero/diagnóstico por imagem , Embrião não Mamífero/fisiologia , Coração/diagnóstico por imagem , Coração/crescimento & desenvolvimento , Coração/fisiologia , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia
4.
Cardiovasc Drugs Ther ; 36(2): 201-215, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33459922

RESUMO

PURPOSE: HIV infection is consistently associated with an increased risk of atherosclerotic cardiovascular disease, but the underlying mechanisms remain elusive. HIV protein Tat, a transcriptional activator of HIV, has been shown to activate NF-κB signaling and promote inflammation in vitro. However, the atherogenic effects of HIV Tat have not been investigated in vivo. Macrophages are one of the major cell types involved in the initiation and progression of atherosclerosis. We and others have previously revealed the important role of IκB kinase ß (IKKß), a central inflammatory coordinator through activating NF-κB, in the regulation of macrophage functions and atherogenesis. This study investigated the impact of HIV Tat exposure on macrophage functions and atherogenesis. METHODS: To investigate the effects of Tat on macrophage IKKß activation and atherosclerosis development in vivo, myeloid-specific IKKß-deficient LDLR-deficient (IKKßΔMyeLDLR-/-) mice and their control littermates (IKKßF/FLDLR-/-) were exposed to recombinant HIV protein Tat. RESULTS: Exposure to Tat significantly increased atherosclerotic lesion size and plaque vulnerability in IKKßF/FLDLR-/- but not IKKßΔMyeLDLR-/- mice. Deficiency of myeloid IKKß attenuated Tat-elicited macrophage inflammatory responses and atherosclerotic lesional inflammation in IKKßΔMyeLDLR-/- mice. Further, RNAseq analysis demonstrated that HIV protein Tat affects the expression of many atherosclerosis-related genes in vitro in an IKKß-dependent manner. CONCLUSIONS: Our findings reveal atherogenic effects of HIV protein Tat in vivo and demonstrate a pivotal role of myeloid IKKß in Tat-driven atherogenesis.


Assuntos
Aterosclerose , Infecções por HIV , Animais , Aterosclerose/metabolismo , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação/metabolismo , Lipoproteínas LDL , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases , Receptores de LDL/metabolismo
5.
Curr Top Membr ; 87: 131-151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34696883

RESUMO

Living cells are exposed to multiple mechanical stimuli from the extracellular matrix or from surrounding cells. Mechanoreceptors are molecules that display status changes in response to mechanical stimulation, transforming physical cues into biological responses to help the cells adapt to dynamic changes of the microenvironment. Mechanical stimuli are responsible for shaping the tridimensional development and patterning of the organs in early embryonic stages. The development of the heart is one of the first morphogenetic events that occur in embryos. As the circulation is established, the vascular system is exposed to constant shear stress, which is the force created by the movement of blood. Both spatial and temporal variations in shear stress differentially modulate critical steps in heart development, such as trabeculation and compaction of the ventricular wall and the formation of the heart valves. Zebrafish embryos are small, transparent, have a short developmental period and allow for real-time visualization of a variety of fluorescently labeled proteins to recapitulate developmental dynamics. In this review, we will highlight the application of zebrafish models as a genetically tractable model for investigating cardiovascular development and regeneration. We will introduce our approaches to manipulate mechanical forces during critical stages of zebrafish heart development and in a model of vascular regeneration, as well as advances in imaging technologies to capture these processes at high resolution. Finally, we will discuss the role of molecules of the Plexin family and Piezo cation channels as major mechanosensors recently implicated in cardiac morphogenesis.


Assuntos
Mecanotransdução Celular , Peixe-Zebra , Animais , Modelos Animais , Morfogênese , Estresse Mecânico
6.
J Vasc Res ; 56(6): 273-283, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31466069

RESUMO

Cardiovascular diseases such as coronary heart disease, myocardial infarction, and cardiac arrhythmia are the leading causes of morbidity and mortality in developed countries and are steadily increasing in developing countries. Fundamental mechanistic studies at the molecular, cellular, and animal model levels are critical for the diagnosis and treatment of these diseases. Despite being phylogenetically distant from humans, zebrafish share remarkable similarity in the genetics and electrophysiology of the cardiovascular system. In the last 2 decades, the development and deployment of innovative genetic manipulation techniques greatly facilitated the application of zebrafish as an animal model for studying basic biology and diseases. Hemodynamic shear stress is intimately involved in vascular development and homeostasis. The critical mechanosensitive signaling pathways in cardiovascular development and pathophysiology previously studied in mammals have been recapitulated in zebrafish. In this short article, we reviewed recent knowledge about the role of mechanosensitive pathways such as Notch, PKCε/PFKFB3, and Wnt/Ang2 in cardiovas-cular development and homeostasis from studies in the -zebrafish model.


Assuntos
Sistema Cardiovascular/metabolismo , Hemodinâmica , Mecanotransdução Celular , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Sistema Cardiovascular/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Homeostase , Organogênese , Estresse Mecânico , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
8.
Am J Physiol Heart Circ Physiol ; 314(6): H1203-H1213, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29451816

RESUMO

Calcific aortic vasculopathy correlates with bone loss in osteoporosis in an age-independent manner. Prior work suggests that teriparatide, the bone anabolic treatment for postmenopausal osteoporosis, may inhibit the onset of aortic calcification. Whether teriparatide affects the progression of preexisting aortic calcification, widespread among this patient population, is unknown. Female apolipoprotein E-deficient mice were aged for over 1 yr to induce aortic calcification, treated for 4.5 wk with daily injections of control vehicle (PBS), 40 µg/kg teriparatide (PTH40), or 400 µg/kg teriparatide (PTH400), and assayed for aortic calcification by microcomputed tomography (microCT) before and after treatment. In a followup cohort, aged female apolipoprotein E-deficient mice were treated with PBS or PTH400 and assayed for aortic calcification by serial microCT and micropositron emission tomography. In both cohorts, aortic calcification detected by microCT progressed similarly in all groups. Mean aortic 18F-NaF incorporation, detected by serial micropositron emission tomography, increased in the PBS-treated group (+14 ± 5%). In contrast, 18F-NaF incorporation decreased in the PTH400-treated group (-33 ± 20%, P = 0.03). Quantitative histochemical analysis by Alizarin red staining revealed a lower mineral surface area index in the PTH400-treated group compared with the PBS-treated group ( P = 0.04). Furthermore, Masson trichrome staining showed a significant increase in collagen deposition in the left ventricular myocardium of mice that received PTH400 [2.1 ± 0.6% vs. control mice (0.5 ± 0.1%), P = 0.02]. In summary, although teriparatide may not affect the calcium mineral content of aortic calcification, it reduces 18F-NaF uptake in calcified lesions, suggesting the possibility that it may reduce mineral surface area with potential impact on plaque stability. NEW & NOTEWORTHY Parathyroid hormone regulates bone mineralization and may also affect vascular calcification, which is an important issue, given that its active fragment, teriparatide, is widely used for the treatment of osteoporosis. To determine whether teriparatide alters vascular calcification, we imaged aortic calcification in mice treated with teriparatide and control mice. Although teriparatide did not affect the calcium content of cardiovascular deposits, it reduced their fluoride tracer uptake.


Assuntos
Aorta/efeitos dos fármacos , Doenças da Aorta/tratamento farmacológico , Aterosclerose/tratamento farmacológico , Conservadores da Densidade Óssea/farmacologia , Hiperlipidemias/complicações , Teriparatida/farmacologia , Calcificação Vascular/tratamento farmacológico , Fatores Etários , Envelhecimento , Animais , Aorta/diagnóstico por imagem , Aorta/patologia , Doenças da Aorta/diagnóstico por imagem , Doenças da Aorta/patologia , Aortografia/métodos , Aterosclerose/diagnóstico por imagem , Aterosclerose/etiologia , Aterosclerose/patologia , Conservadores da Densidade Óssea/toxicidade , Angiografia por Tomografia Computadorizada , Modelos Animais de Doenças , Feminino , Fibrose , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Camundongos Knockout para ApoE , Placa Aterosclerótica , Tomografia por Emissão de Pósitrons , Teriparatida/toxicidade , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/etiologia , Calcificação Vascular/patologia , Microtomografia por Raio-X
9.
PLoS Comput Biol ; 13(10): e1005828, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29084212

RESUMO

Blood flow and mechanical forces in the ventricle are implicated in cardiac development and trabeculation. However, the mechanisms of mechanotransduction remain elusive. This is due in part to the challenges associated with accurately quantifying mechanical forces in the developing heart. We present a novel computational framework to simulate cardiac hemodynamics in developing zebrafish embryos by coupling 4-D light sheet imaging with a stabilized finite element flow solver, and extract time-dependent mechanical stimuli data. We employ deformable image registration methods to segment the motion of the ventricle from high resolution 4-D light sheet image data. This results in a robust and efficient workflow, as segmentation need only be performed at one cardiac phase, while wall position in the other cardiac phases is found by image registration. Ventricular hemodynamics are then quantified by numerically solving the Navier-Stokes equations in the moving wall domain with our validated flow solver. We demonstrate the applicability of the workflow in wild type zebrafish and three treated fish types that disrupt trabeculation: (a) chemical treatment using AG1478, an ErbB2 signaling inhibitor that inhibits proliferation and differentiation of cardiac trabeculation; (b) injection of gata1a morpholino oligomer (gata1aMO) suppressing hematopoiesis and resulting in attenuated trabeculation; (c) weak-atriumm58 mutant (wea) with inhibited atrial contraction leading to a highly undeveloped ventricle and poor cardiac function. Our simulations reveal elevated wall shear stress (WSS) in wild type and AG1478 compared to gata1aMO and wea. High oscillatory shear index (OSI) in the grooves between trabeculae, compared to lower values on the ridges, in the wild type suggest oscillatory forces as a possible regulatory mechanism of cardiac trabeculation development. The framework has broad applicability for future cardiac developmental studies focused on quantitatively investigating the role of hemodynamic forces and mechanotransduction during morphogenesis.


Assuntos
Técnicas de Imagem Cardíaca/métodos , Ventrículos do Coração/embriologia , Mecanotransdução Celular/fisiologia , Modelos Cardiovasculares , Morfogênese/fisiologia , Função Ventricular/fisiologia , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Simulação por Computador , Ventrículos do Coração/anatomia & histologia , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Estresse Mecânico , Peixe-Zebra
10.
PLoS Comput Biol ; 13(12): e1005892, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29244812

RESUMO

In animals, gas exchange between blood and tissues occurs in narrow vessels, whose diameter is comparable to that of a red blood cell. Red blood cells must deform to squeeze through these narrow vessels, transiently blocking or occluding the vessels they pass through. Although the dynamics of vessel occlusion have been studied extensively, it remains an open question why microvessels need to be so narrow. We study occlusive dynamics within a model microvascular network: the embryonic zebrafish trunk. We show that pressure feedbacks created when red blood cells enter the finest vessels of the trunk act together to uniformly partition red blood cells through the microvasculature. Using mathematical models as well as direct observation, we show that these occlusive feedbacks are tuned throughout the trunk network to prevent the vessels closest to the heart from short-circuiting the network. Thus occlusion is linked with another open question of microvascular function: how are red blood cells delivered at the same rate to each micro-vessel? Our analysis shows that tuning of occlusive feedbacks increase the total dissipation within the network by a factor of 11, showing that uniformity of flows rather than minimization of transport costs may be prioritized by the microvascular network.


Assuntos
Microcirculação/fisiologia , Microvasos/fisiologia , Modelos Cardiovasculares , Animais , Animais Geneticamente Modificados , Velocidade do Fluxo Sanguíneo/fisiologia , Biologia Computacional , Eritrócitos/fisiologia , Retroalimentação Fisiológica , Hemorreologia , Microvasos/anatomia & histologia , Peixe-Zebra
11.
Curr Cardiol Rep ; 20(5): 35, 2018 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-29574550

RESUMO

PURPOSE OF REVIEW: Real-time 3-dimensional (3-D) imaging of cardiovascular injury and regeneration remains challenging. We introduced a multi-scale imaging strategy that uses light-sheet illumination to enable applications of cardiovascular injury and repair in models ranging from zebrafish to rodent hearts. RECENT FINDINGS: Light-sheet imaging enables rapid data acquisition with high spatiotemporal resolution and with minimal photo-bleaching or photo-toxicity. We demonstrated the capacity of this novel light-sheet approach for scanning a region of interest with specific fluorescence contrast, thereby providing axial and temporal resolution at the cellular level without stitching image columns or pivoting illumination beams during one-time imaging. This cutting-edge imaging technique allows for elucidating the differentiation of stem cells in cardiac regeneration, providing an entry point to discover novel micro-circulation phenomenon with clinical significance for injury and repair. These findings demonstrate the multi-scale applications of this novel light-sheet imaging strategy to advance research in cardiovascular development and regeneration.


Assuntos
Doenças Cardiovasculares/diagnóstico por imagem , Traumatismos Cardíacos/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Miocárdio/patologia , Regeneração/fisiologia , Peixe-Zebra/embriologia , Animais , Doenças Cardiovasculares/patologia , Traumatismos Cardíacos/patologia , Microscopia de Fluorescência , Modelos Animais , Modelos Cardiovasculares , Roedores
12.
Sensors (Basel) ; 18(1)2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29283402

RESUMO

Heart disease is the leading cause of mortality in the U.S. with approximately 610,000 people dying every year. Effective therapies for many cardiac diseases are lacking, largely due to an incomplete understanding of their genetic basis and underlying molecular mechanisms. Zebrafish (Danio rerio) are an excellent model system for studying heart disease as they enable a forward genetic approach to tackle this unmet medical need. In recent years, our team has been employing electrocardiogram (ECG) as an efficient tool to study the zebrafish heart along with conventional approaches, such as immunohistochemistry, DNA and protein analyses. We have overcome various challenges in the small size and aquatic environment of zebrafish in order to obtain ECG signals with favorable signal-to-noise ratio (SNR), and high spatial and temporal resolution. In this paper, we highlight our recent efforts in zebrafish ECG acquisition with a cost-effective simplified microelectrode array (MEA) membrane providing multi-channel recording, a novel multi-chamber apparatus for simultaneous screening, and a LabVIEW program to facilitate recording and processing. We also demonstrate the use of machine learning-based programs to recognize specific ECG patterns, yielding promising results with our current limited amount of zebrafish data. Our solutions hold promise to carry out numerous studies of heart diseases, drug screening, stem cell-based therapy validation, and regenerative medicine.


Assuntos
Eletrocardiografia , Animais , Coração , Microeletrodos , Razão Sinal-Ruído , Peixe-Zebra
13.
Dev Biol ; 404(2): 49-60, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26004360

RESUMO

Angiogenesis relies on specialized endothelial tip cells to extend toward guidance cues in order to direct growing blood vessels. Although many of the signaling pathways that control this directional endothelial sprouting are well known, the specific cellular mechanisms that mediate this process remain to be fully elucidated. Here, we show that Polo-like kinase 2 (PLK2) regulates Rap1 activity to guide endothelial tip cell lamellipodia formation and subsequent angiogenic sprouting. Using a combination of high-resolution in vivo imaging of zebrafish vascular development and a human umbilical vein endothelial cell (HUVEC) in vitro cell culture system, we observed that loss of PLK2 function resulted in a reduction in endothelial cell sprouting and migration, whereas overexpression of PLK2 promoted angiogenesis. Furthermore, we discovered that PLK2 may control angiogenic sprouting by binding to PDZ-GEF to regulate RAP1 activity during endothelial cell lamellipodia formation and extracellular matrix attachment. Consistent with these findings, constitutively active RAP1 could rescue the endothelial cell sprouting defects observed in zebrafish and HUVEC PLK2 knockdowns. Overall, these findings reveal a conserved PLK2-RAP1 pathway that is crucial to regulate endothelial tip cell behavior in order to ensure proper vascular development and patterning in vertebrates.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica/genética , Proteínas Serina-Treonina Quinases/genética , Peixe-Zebra/embriologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Pseudópodes/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais
14.
Ultrason Imaging ; 38(5): 314-31, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26400676

RESUMO

Catheter-based intravascular imaging modalities are being developed to visualize pathologies in coronary arteries, such as high-risk vulnerable atherosclerotic plaques known as thin-cap fibroatheroma, to guide therapeutic strategy at preventing heart attacks. Mounting evidences have shown three distinctive histopathological features-the presence of a thin fibrous cap, a lipid-rich necrotic core, and numerous infiltrating macrophages-are key markers of increased vulnerability in atherosclerotic plaques. To visualize these changes, the majority of catheter-based imaging modalities used intravascular ultrasound (IVUS) as the technical foundation and integrated emerging intravascular imaging techniques to enhance the characterization of vulnerable plaques. However, no current imaging technology is the unequivocal "gold standard" for the diagnosis of vulnerable atherosclerotic plaques. Each intravascular imaging technology possesses its own unique features that yield valuable information although encumbered by inherent limitations not seen in other modalities. In this context, the aim of this review is to discuss current scientific innovations, technical challenges, and prospective strategies in the development of IVUS-based multi-modality intravascular imaging systems aimed at assessing atherosclerotic plaque vulnerability.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Imagem Multimodal/métodos , Placa Aterosclerótica/diagnóstico por imagem , Ultrassonografia de Intervenção/métodos , Humanos
15.
Curr Opin Lipidol ; 26(5): 376-83, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26218416

RESUMO

PURPOSE OF REVIEW: Blood flow is intimately linked with cardiovascular development, repair and dysfunction. The current review will build on the fluid mechanical principle underlying haemodynamic shear forces, mechanotransduction and metabolic effects. RECENT FINDINGS: Pulsatile flow produces both time (∂τ/∂t) and spatial-varying shear stress (∂τ/∂x) to modulate vascular oxidative stress and inflammatory response with pathophysiological significance to atherosclerosis. The characteristics of haemodynamic shear forces, namely, steady laminar (∂τ/∂t = 0), pulsatile shear stress (PSS: unidirectional forward flow) and oscillatory shear stress (bidirectional with a near net 0 forward flow), modulate mechano-signal transduction to influence metabolic effects on vascular endothelial function. Atheroprotective PSS promotes antioxidant, anti-inflammatory and antithrombotic responses, whereas atherogenic oscillatory shear stress induces nicotinamide adenine dinucleotide phosphate oxidase-JNK signalling to increase mitochondrial superoxide production, protein degradation of manganese superoxide dismutase and post-translational protein modifications of LDL particles in the disturbed flow-exposed regions of vasculature. In the era of tissue regeneration, shear stress has been implicated in reactivation of developmental genes, namely, Wnt and Notch signalling, for vascular development and repair. SUMMARY: Blood flow imparts a dynamic continuum from vascular development to repair. Augmentation of PSS confers atheroprotection and reactivation of developmental signalling pathways for regeneration.


Assuntos
Hemodinâmica , Animais , Aterosclerose/fisiopatologia , Fenômenos Biomecânicos , Endotélio Vascular/fisiopatologia , Humanos , Mecanotransdução Celular , Estresse Oxidativo , Fluxo Sanguíneo Regional , Transdução de Sinais
16.
Dev Biol ; 389(2): 182-91, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24607366

RESUMO

The vertebrate heart undergoes early complex morphologic events in order to develop key cardiac structures that regulate its overall function (Fahed et al., 2013). Although many genetic factors that participate in patterning the heart have been elucidated (Tu and Chi, 2012), the cellular events that drive cardiac morphogenesis have been less clear. From a chemical genetic screen to identify cellular pathways that control cardiac morphogenesis in zebrafish, we observed that inhibition of the Rho signaling pathways resulted in failure to form the atrioventricular canal and loop the linear heart tube. To identify specific Rho proteins that may regulate this process, we analyzed cardiac expression profiling data and discovered that RhoU was expressed at the atrioventricular canal during the time when it forms. Loss of RhoU function recapitulated the atrioventricular canal and cardiac looping defects observed in the ROCK inhibitor treated zebrafish. Similar to its family member RhoV/Chp (Tay et al., 2010), we discovered that RhoU regulates the cell junctions between cardiomyocytes through the Arhgef7b/Pak kinase pathway in order to guide atrioventricular canal development and cardiac looping. Inhibition of this pathway resulted in similar underlying cardiac defects and conversely, overexpression of a PAK kinase was able to rescue the loss of RhoU cardiac defect. Finally, we found that Wnt signaling, which has been implicated in atrioventricular canal development (Verhoeven et al., 2011), may regulate the expression of RhoU at the atrioventricular canal. Overall, these findings reveal a cardiac developmental pathway involving RhoU/Arhgef7b/Pak signaling, which helps coordinate cell junction formation between atrioventricular cardiomyocytes to promote cell adhesiveness and cell shapes during cardiac morphogenesis. Failure to properly form these cell adhesions during cardiac development may lead to structural heart defects and mechanistically account for the cellular events that occur in certain human congenital heart diseases.


Assuntos
Coração/embriologia , Morfogênese , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Caderinas/metabolismo , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Forma Celular/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Coração/efeitos dos fármacos , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/enzimologia , Átrios do Coração/patologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/enzimologia , Ventrículos do Coração/patologia , Humanos , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Morfolinos/farmacologia , Mutação/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fenótipo , Via de Sinalização Wnt/efeitos dos fármacos , Proteínas de Peixe-Zebra/genética , Proteínas rho de Ligação ao GTP/genética
17.
Biomed Microdevices ; 17(2): 40, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25749638

RESUMO

Continuous monitoring of aberrant electrical rhythms during heart injury and repair requires prolonged data acquisition. We hereby developed a wearable microelectrode membrane that could be adherent to the chest of neonatal mice for in situ wireless recording of electrocardiogram (ECG) signals. The novel dry-contact membrane with a meshed parylene-C pad adjacent to the microelectrodes and the expandable meandrous strips allowed for varying size of the neonates. The performance was evaluated at the system level; specifically, the ECG signals (µV) acquired from the microelectrodes underwent two-stage amplification, band-pass filtering, and optical data transmission by an infrared Light Emitting Diode (LED) to the data-receiving unit. The circuitry was prototyped on a printed circuit board (PCB), consuming less than 300 µW, and was completely powered by an inductive coupling link. Distinct P waves, QRS complexes, and T waves of ECG signals were demonstrated from the non-pharmacologically sedated neonates at ~600 beats per minutes. Thus, we demonstrate the feasibility of both real-time and wireless monitoring cardiac rhythms in a neonatal mouse (17-20 mm and <1 g) via dry-contact microelectrode membrane; thus, providing a basis for diagnosing aberrant electrical conduction in animal models of cardiac injury and repair.


Assuntos
Eletrocardiografia/instrumentação , Eletrocardiografia/métodos , Microeletrodos , Tecnologia sem Fio/instrumentação , Animais , Animais Recém-Nascidos , Tamanho Corporal , Desenho de Equipamento , Membranas Artificiais , Reprodutibilidade dos Testes
18.
Arterioscler Thromb Vasc Biol ; 34(10): 2268-75, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25147335

RESUMO

OBJECTIVE: Fluid shear stress intimately regulates vasculogenesis and endothelial homeostasis. The canonical Wnt/ß-catenin signaling pathways play an important role in differentiation and proliferation. In this study, we investigated whether shear stress activated angiopoietin-2 (Ang-2) via the canonical Wnt signaling pathway with an implication in vascular endothelial repair. APPROACH AND RESULTS: Oscillatory shear stress upregulated both TOPflash Wnt reporter activities and the expression of Ang-2 mRNA and protein in human aortic endothelial cells accompanied by an increase in nuclear ß-catenin intensity. Oscillatory shear stress-induced Ang-2 and Axin-2 mRNA expression was downregulated in the presence of a Wnt inhibitor, IWR-1, but was upregulated in the presence of a Wnt agonist, LiCl. Ang-2 expression was further downregulated in response to a Wnt signaling inhibitor, DKK-1, but was upregulated by Wnt agonist Wnt3a. Both DKK-1 and Ang-2 siRNA inhibited endothelial cell migration and tube formation, which were rescued by human recombinant Ang-2. Both Ang-2 and Axin-2 mRNA downregulation was recapitulated in the heat-shock-inducible transgenic Tg(hsp70l:dkk1-GFP) zebrafish embryos at 72 hours post fertilization. Ang-2 morpholino injection of Tg (kdrl:GFP) fish impaired subintestinal vessel formation at 72 hours post fertilization, which was rescued by zebrafish Ang-2 mRNA coinjection. Inhibition of Wnt signaling with IWR-1 also downregulated Ang-2 and Axin-2 expression and impaired vascular repair after tail amputation, which was rescued by zebrafish Ang-2 mRNA injection. CONCLUSIONS: Shear stress activated Ang-2 via canonical Wnt signaling in vascular endothelial cells, and Wnt-Ang-2 signaling is recapitulated in zebrafish embryos with a translational implication in vascular development and repair.


Assuntos
Angiopoietina-2/metabolismo , Mecanotransdução Celular , Neovascularização Fisiológica , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Angiopoietina-2/genética , Animais , Animais Geneticamente Modificados , Proteína Axina/genética , Proteína Axina/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Interferência de RNA , RNA Mensageiro/metabolismo , Estresse Fisiológico , Fatores de Tempo , Transfecção , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt3A/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
19.
ACS Nano ; 18(9): 6908-6926, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38381620

RESUMO

The durability of a protective immune response generated by a vaccine depends on its ability to induce long-term T cell immunity, which tends to decline in aging populations. The longest protection appears to arise from T memory stem cells (TMSCs) that confer high expandability and effector functions when challenged. Here we engineered artificial antigen presenting cells (aAPC) with optimized size, stiffness and activation signals to induce human and mouse CD8+ TMSCs in vitro. This platform was optimized as a vaccine booster of TMSCs (Vax-T) with prolonged release of small-molecule blockade of the glycogen synthase kinase-3ß together with target antigens. By using SARS-CoV-2 antigen as a model, we show that a single injection of Vax-T induces durable antigen-specific CD8+ TMSCs in young and aged mice, and generates humoral responses at a level stronger than or similar to soluble vaccines. This Vax-T approach can boost long-term immunity to fight infectious diseases, cancer, and other diseases.


Assuntos
Linfócitos T CD8-Positivos , Vacinas , Camundongos , Humanos , Animais , Memória Imunológica , Materiais Biocompatíveis , Células-Tronco
20.
Nat Electron ; 7(2): 168-179, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38433871

RESUMO

Approaches to quantify stress responses typically rely on subjective surveys and questionnaires. Wearable sensors can potentially be used to continuously monitor stress-relevant biomarkers. However, the biological stress response is spread across the nervous, endocrine, and immune systems, and the capabilities of current sensors are not sufficient for condition-specific stress response evaluation. Here we report an electronic skin for stress response assessment that non-invasively monitors three vital signs (pulse waveform, galvanic skin response and skin temperature) and six molecular biomarkers in human sweat (glucose, lactate, uric acid, sodium ions, potassium ions and ammonium). We develop a general approach to prepare electrochemical sensors that relies on analogous composite materials for stabilizing and conserving sensor interfaces. The resulting sensors offer long-term sweat biomarker analysis of over 100 hours with high stability. We show that the electronic skin can provide continuous multimodal physicochemical monitoring over a 24-hour period and during different daily activities. With the help of a machine learning pipeline, we also show that the platform can differentiate three stressors with an accuracy of 98.0%, and quantify psychological stress responses with a confidence level of 98.7%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA