RESUMO
Eu-doped amorphous gehlenite phosphors with various morphologies were synthesized using spray pyrolysis. Along with un-treated precursor, two commonly used pore-forming agents, polyethylene glycol and hydrogen peroxide, were applied to achieve porous and hollow particle structures. The phase compositions, surface morphologies, inner structures and photoluminescence properties of the resulting phosphors were examined by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and fluorescence spectrometry. The results showed that the morphologies of the particles were well-controlled, and a correlation between morphology and photoluminescence properties was established.
RESUMO
Scaphoid fractures are the most common carpal fractures. Diagnosing scaphoid fractures is challenging. Recently, cone-beam computed tomography (CBCT) has been shown to be a promising strategy for diagnosing scaphoid fractures. The diagnostic performance of CBCT remains inconclusive in the literature. Through a systematic review and meta-analysis, our study aims to determine the diagnostic performance of CBCT for diagnosing scaphoid fractures. Five databases were searched up to March 25, 2020. We included prospective and retrospective studies describing the diagnostic accuracy of CBCT for scaphoid fractures in adult patients. QUADAS-2 tool was used to assess the quality of the included studies. Four studies (n = 350) were included in the meta-analysis. Three of the four studies had high bias risk. The result showed that CBCT had a pooled sensitivity of 0.88 and a pooled specificity of 0.99 for scaphoid fracture diagnosis. The heterogeneities of sensitivity and specificity were substantial. The area under the summary receiver operating characteristic curve was 0.98. No significant publication bias was observed. The result suggested that the diagnostic performance of CBCT for scaphoid fracture was excellent. The certainty of current evidence is low. Further well-designed studies with large sample sizes are warranted to confirm this finding.
Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Fraturas Ósseas/diagnóstico por imagem , Osso Escafoide/diagnóstico por imagem , Humanos , Estudos Prospectivos , Estudos RetrospectivosRESUMO
Mesoporous bioactive glass (MBG) is considered as one of the most important materials in the field of bone implants and drug carriers, owing to its superior bioactivity. In previous studies, tri-block surfactants (e.g., F127 and P123) were commonly used as pore-forming agents. However, the use of surfactants may cause serious problems such as micelle aggregation and carbon contamination and thus decrease bioactivity. Therefore, in this study, we demonstrated the synthesis of MBG using acetic acid (HAc) as a pore-forming agent to overcome the disadvantages caused by surfactants. Both untreated and HAc-treated BG powders were synthesized using spray pyrolysis and various characterizations were carried out. The results show that a mesoporous structure was successfully formed and the highest specific surface area of ~230 m²/g with improved bioactivity was reported.