Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Cancer ; 130(8): 1324-1336, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38347095

RESUMO

BACKGROUND: Cyclic nucleotides are critical mediators of cellular signalling in glioblastoma. However, the clinical relevance and mechanisms of regulating cyclic nucleotides in glioblastoma progression and recurrence have yet to be thoroughly explored. METHODS: In silico, mRNA, and protein level analyses identified the primary regulator of cyclic nucleotides in recurrent human glioblastoma. Lentiviral and pharmacological manipulations examined the functional impact of cyclic nucleotide signalling in human glioma cell lines and primary glioblastoma cells. An orthotopic xenograft mice model coupled with aspirin hydrogels verified the in vivo outcome of targeting cyclic nucleotide signalling. RESULTS: Elevated intracellular levels of cGMP, instead of cAMP, due to a lower substrate efflux from ATP-binding cassette sub-family C member 4 (ABCC4) is engaged in the recurrence of glioblastoma. ABCC4 gene expression is negatively associated with recurrence and overall survival outcomes in glioblastoma specimens. ABCC4 loss-of-function activates cGMP-PKG signalling, promoting malignancy in glioblastoma cells and xenografts. Hydrogels loaded with aspirin, inhibiting glioblastoma progression partly by upregulating ABCC4 expressions, augment the efficacy of standard-of-care therapies in orthotopic glioblastoma xenografts. CONCLUSION: ABCC4, repressing the cGMP-PKG signalling pathway, is a tumour suppressor in glioblastoma progression and recurrence. Aspirin hydrogels impede glioblastoma progression through ABCC4 restoration and constitute a viable translational approach.


Assuntos
AMP Cíclico , Glioblastoma , Humanos , Camundongos , Animais , AMP Cíclico/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Recidiva Local de Neoplasia/genética , GMP Cíclico/metabolismo , Nucleotídeos Cíclicos , Aspirina , Hidrogéis , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética
2.
Cancer Sci ; 114(1): 174-186, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36106406

RESUMO

Hypoxic tumor microenvironment (HTM) promotes a more aggressive and malignant state in glioblastoma. However, little is known about the role and mechanism of CXC chemokine ligand 14 (CXCL14) in HTM-mediated glioblastoma progression. In this study, we report that CXCL14 expression correlated with poor outcomes, tumor grade, and hypoxia-inducible factor (HIF) expression in patients with glioblastoma. CXCL14 was upregulated in tumor cells within the hypoxic areas of glioblastoma. Hypoxia induced HIF-dependent expression of CXCL14, which promoted glioblastoma tumorigenicity and invasiveness in vitro and in vivo. Moreover, CXCL14 gain-of-function in glioblastoma cells activated insulin-like growth factor-1 receptor (IGF-1R) signal transduction to regulate the growth, invasiveness, and neurosphere formation of glioblastoma. Finally, systemic delivery of CXCL14 siRNA nanoparticles (NPs) with polysorbate 80 coating significantly suppressed tumor growth in vivo and extended the survival time in patient-derived glioblastoma xenografts. Together, these findings suggest that HIF-dependent CXCL14 expression contributes to HTM-promoted glioblastoma tumorigenicity and invasiveness through activation of the IGF-1R signaling pathway. CXCL14 siRNA NPs as an oligonucleotide drug can inhibit glioblastoma progression and constitute a translational path for the clinical treatment of glioblastoma patients.


Assuntos
Glioblastoma , Humanos , Glioblastoma/metabolismo , Quimiocinas CXC/genética , Fator de Crescimento Insulin-Like I , Ligantes , Hipóxia , Transdução de Sinais , RNA Interferente Pequeno , Linhagem Celular Tumoral , Microambiente Tumoral
3.
J Gen Virol ; 102(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33206033

RESUMO

Astroviruses are non-enveloped, positive-sense, ssRNA viruses and often associated with gastrointestinal diseases. Murine astrovirus (MuAstV) was first confirmed in a laboratory mouse colony in 2011. Although infected mice do not present significant clinical symptoms, the virus might interfere with research results. A recent surveillance has shown that MuAstV is highly prevalent in laboratory mice. The aims of the present study were to identify and characterize MuAstV strains as well as to investigate the prevalence rate of viral RNA in laboratory mice in Taiwan, and to estimate the origin and past population demography of MuAstVs. Based on molecular surveillance, MuAstV RNA was detected in 45.7 % of laboratory mice (48/105) from seven of nine colonies. Three fully sequenced MuAstV strains, MuAstV TW1, TW2 and TW3, exhibited 89.1-94.4 % and 89.1-90.0 % nucleotide identities with the reference strains MuAstV STL1 and STL2, respectively. Phylogenetic analyses of the partial regions of the RNA-dependent RNA polymerase (RdRp) and capsid protein (CP) genes of 18 Taiwan strains along with other astroviruses revealed that there are three distinct lineages of mouse astrovirus, MuAstV1, MuAstV2 and mouse astrovirus JF755422. The mutation rates of MuAstV1 were 2.6×10-4 and 6.2×10-4 substitutions/site/year for the RdRp and CP regions, respectively. Based on the above molecular clock, the colonization of MuAstV1 in laboratory mice was between 1897 and 1912, in good agreement with the establishment of 'modern' laboratory mouse facilities. Since its initial infection, the population size of MuAstV1 has increased 15-60-fold, probably consistent with the increased use of laboratory mice. In conclusion, MuAstV1 has been associated with modern laboratory mice since the beginning, and its influence on research results may require further investigation.


Assuntos
Infecções por Astroviridae/veterinária , Astroviridae/genética , Astroviridae/isolamento & purificação , Doenças dos Roedores/epidemiologia , Animais , Animais de Laboratório/virologia , Infecções por Astroviridae/virologia , Proteínas do Capsídeo/genética , Demografia , Camundongos , Filogenia , RNA Viral/genética , RNA Polimerase Dependente de RNA , Doenças dos Roedores/virologia , Taiwan
4.
J Biomed Sci ; 27(1): 73, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32507105

RESUMO

BACKGROUND: SARS-CoV-2 began spreading in December 2019 and has since become a pandemic that has impacted many aspects of human society. Several issues concerning the origin, time of introduction to humans, evolutionary patterns, and underlying force driving the SARS-CoV-2 outbreak remain unclear. METHOD: Genetic variation in 137 SARS-CoV-2 genomes and related coronaviruses as of 2/23/2020 was analyzed. RESULT: After correcting for mutational bias, the excess of low frequency mutations on both synonymous and nonsynonymous sites was revealed which is consistent with the recent outbreak of the virus. In contrast to adaptive evolution previously reported for SARS-CoV during its brief epidemic in 2003, our analysis of SARS-CoV-2 genomes shows signs of relaxation. The sequence similarity in the spike receptor binding domain between SARS-CoV-2 and a sequence from pangolin is probably due to an ancient intergenomic introgression that occurred approximately 40 years ago. The current outbreak of SARS-CoV-2 was estimated to have originated on 12/11/2019 (95% HPD 11/13/2019-12/23/2019). The effective population size of the virus showed an approximately 20-fold increase from the onset of the outbreak to the lockdown of Wuhan (1/23/2020) and ceased to increase afterwards, demonstrating the effectiveness of social distancing in preventing its spread. Two mutations, 84S in orf8 protein and 251 V in orf3 protein, occurred coincidentally with human intervention. The former first appeared on 1/5/2020 and plateaued around 1/23/2020. The latter rapidly increased in frequency after 1/23/2020. Thus, the roles of these mutations on infectivity need to be elucidated. Genetic diversity of SARS-CoV-2 collected from China is two times higher than those derived from the rest of the world. A network analysis found that haplotypes collected from Wuhan were interior and had more mutational connections, both of which are consistent with the observation that the SARS-CoV-2 outbreak originated in China. CONCLUSION: SARS-CoV-2 might have cryptically circulated within humans for years before being discovered. Data from the early outbreak and hospital archives are needed to trace its evolutionary path and determine the critical steps required for effective spreading.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Surtos de Doenças , Variação Genética , Genoma Viral , Pneumonia Viral/epidemiologia , COVID-19 , China/epidemiologia , Infecções por Coronavirus/virologia , Humanos , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2
5.
Immunology ; 154(2): 274-284, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29250768

RESUMO

Trafficking and recruitment of immune cells to the site of inflammation with spatial and temporal synchronization is crucial for the development of allergic airway inflammation. Particularly, chemokines are known to be key players in these processes. Previous studies revealed that the CXCL12/CXCR4 axis plays an important role in regulating allergic airway inflammation. However, the role of CXCR7, a recently discovered second receptor for CXCL12, in regulating airway inflammation has not been explored. Initially, CXCR7 was considered as a decoy receptor; however, numerous subsequent studies revealed that engagement of CXCR7 triggered its own signalling or modulated CXCR4-mediated signalling. In the present study, we detected the expression of CXCR7 in airway epithelial cells. Use of a lentiviral delivery system to knock down the expression of CXCR7 in the lung of sensitized mice abrogated the cardinal features of asthma, indicating that CXCR7 plays a role in regulating allergic airway inflammation. The activation of mitogen-activated protein kinase and Akt signalling in response to CXCL12 in the mouse epithelial cell line MLE-12 was reduced when CXCR7 expression was knocked down. However, either knockdown or overexpression of CXCR7 in MLE-12 did not affect CXCL12-mediated calcium influx, indicating that CXCR7 does not modulate CXCR4-mediated signalling, and that it functions as a signalling receptor rather than a decoy receptor. Finally, we found that the expression of chemokine CCL2 is regulated by CXCR7/CXCL12-mediated signalling through ß-arrestin in airway epithelial cells. Hence, regulating the expression of CCL2 in airway epithelial cells may be one mechanism by which CXCR7 participates in regulating allergic airway inflammation.


Assuntos
Receptores CXCR/metabolismo , Hipersensibilidade Respiratória/etiologia , Hipersensibilidade Respiratória/metabolismo , Alérgenos/imunologia , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Imunoglobulina E/imunologia , Imuno-Histoquímica , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Interferência de RNA , Receptores CXCR/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Hipersensibilidade Respiratória/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
6.
J Pathol ; 241(3): 337-349, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27801527

RESUMO

Hypoxia-inducible factor 1α (HIF-1α) controls many genes involved in physiological and pathological processes. However, its roles in glutamatergic transmission and excitotoxicity are unclear. Here, we proposed that HIF-1α might contribute to glutamate-mediated excitotoxicity during cerebral ischaemia-reperfusion (CIR) and investigated its molecular mechanism. We showed that an HIF-1α conditional knockout mouse displayed an inhibition in CIR-induced elevation of extracellular glutamate and N-methyl-d-aspartate receptor (NMDAR) activation. By gene screening for glutamate transporters in cortical cells, we found that HIF-1α mainly regulates the cystine-glutamate transporter (system xc- ) subunit xCT by directly binding to its promoter; xCT and its function are up-regulated in the ischaemic brains of rodents and humans, and the effects lasted for several days. Genetic deletion of xCT in cortical cells of mice inhibits either oxygen glucose deprivation/reoxygenation (OGDR) or CIR-mediated glutamate excitotoxicity in vitro and in vivo. Pharmaceutical inhibition of system xc- by a clinically approved anti-cancer drug, sorafenib, improves infarct volume and functional outcome in rodents with CIR and its therapeutic window is at least 3 days. Taken together, these findings reveal that HIF-1α plays a role in CIR-induced glutamate excitotoxicity via the long-lasting activation of system xc- -dependent glutamate outflow and suggest that system xc- is a promising therapeutic target with an extended therapeutic window in stroke. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Hipóxia Celular/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Separação Celular/métodos , Ácido Glutâmico/metabolismo , Camundongos , Ativação Transcricional/fisiologia , Regulação para Cima
7.
BMC Bioinformatics ; 18(1): 223, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446139

RESUMO

BACKGROUND: The accuracy of metagenomic assembly is usually compromised by high levels of polymorphism due to divergent reads from the same genomic region recognized as different loci when sequenced and assembled together. A viral quasispecies is a group of abundant and diversified genetically related viruses found in a single carrier. Current mainstream assembly methods, such as Velvet and SOAPdenovo, were not originally intended for the assembly of such metagenomics data, and therefore demands for new methods to provide accurate and informative assembly results for metagenomic data. RESULTS: In this study, we present a hybrid method for assembling highly polymorphic data combining the partial de novo-reference assembly (PDR) strategy and the BLAST-based assembly pipeline (BBAP). The PDR strategy generates in situ reference sequences through de novo assembly of a randomly extracted partial data set which is subsequently used for the reference assembly for the full data set. BBAP employs a greedy algorithm to assemble polymorphic reads. We used 12 hepatitis B virus quasispecies NGS data sets from a previous study to assess and compare the performance of both PDR and BBAP. Analyses suggest the high polymorphism of a full metagenomic data set leads to fragmentized de novo assembly results, whereas the biased or limited representation of external reference sequences included fewer reads into the assembly with lower assembly accuracy and variation sensitivity. In comparison, the PDR generated in situ reference sequence incorporated more reads into the final PDR assembly of the full metagenomics data set along with greater accuracy and higher variation sensitivity. BBAP assembly results also suggest higher assembly efficiency and accuracy compared to other assembly methods. Additionally, BBAP assembly recovered HBV structural variants that were not observed amongst assembly results of other methods. Together, PDR/BBAP assembly results were significantly better than other compared methods. CONCLUSIONS: Both PDR and BBAP independently increased the assembly efficiency and accuracy of highly polymorphic data, and assembly performances were further improved when used together. BBAP also provides nucleotide frequency information. Together, PDR and BBAP provide powerful tools for metagenomic data studies.


Assuntos
Algoritmos , Metagenômica/métodos , DNA Viral/genética , Vírus da Hepatite B/genética , Sequenciamento de Nucleotídeos em Larga Escala , Software
8.
J Virol ; 89(7): 3512-22, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25589664

RESUMO

UNLABELLED: The evolutionary rates of hepatitis B virus (HBV) estimated using contemporary sequences are 10(2) to 10(4) times higher than those derived from archaeological and genetic evidence. This discrepancy makes the origin of HBV and the time scale of its spread, both of which are critical for studying the burden of HBV pathogenicity, largely unresolved. To evaluate whether the dual demands (i.e., adaptation within hosts and colonization between hosts) of the viral life cycle affect this conundrum, the HBV quasispecies dynamics within and among hosts from a family consisting of a grandmother, her 5 children, and her 2 granddaughters, all of whom presumably acquired chronic HBV through mother-to-infant transmission, were examined by PCR cloning and next-generation sequencing methods. We found that the evolutionary rate of HBV between hosts was considerably lower than that within hosts. Moreover, the between-host substitution rates of HBV decreased as transmission numbers between individuals increased. Both observations were due primarily to changes at nonsynonymous rather than synonymous sites. There were significantly more multiple substitutions than expected for random mutation processes, and 97% of substitutions were changed from common to rare amino acid residues in the database. Continual switching between colonization and adaptation resulted in a rapid accumulation of mutations at a limited number of positions, which quickly became saturated, whereas substitutions at the remaining regions occurred at a much lower rate. Our study may help to explain the time-dependent HBV substitution rates reported in the literature and provide new insights into the origin of the virus. IMPORTANCE: It is known that the estimated hepatitis B virus (HBV) substitution rate is time dependent, but the reason behind this observation is still elusive. We hypothesize that owing to the small genome size of HBV, transmission between hosts and adaptation within hosts must exhibit high levels of fitness trade-offs for the virus. By studying the HBV quasispecies dynamics for a chain of sequentially infected transmissions within a family, we found the HBV substitution rate between patients to be negatively correlated with the number of transmissions. Continual switching between hosts resulted in a rapid accumulation of mutations at a limited number of genomic sites, which quickly became saturated in the short term. Nevertheless, substitutions at the remaining regions occurred at a much lower rate. Therefore, the HBV substitution rate decreased as the divergence time increased.


Assuntos
Evolução Molecular , Saúde da Família , Variação Genética , Vírus da Hepatite B/genética , Hepatite B Crônica/transmissão , Hepatite B Crônica/virologia , Transmissão Vertical de Doenças Infecciosas , Adaptação Biológica , Adulto , Idoso , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , DNA Viral/genética , Feminino , Vírus da Hepatite B/classificação , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação Puntual , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
9.
Stem Cells ; 33(4): 1153-72, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25523790

RESUMO

Understanding stem cell homing, which is governed by environmental signals from the surrounding niche, is important for developing effective stem cell-based repair strategies. The molecular mechanism by which the brain under ischemic stress recruits bone marrow-derived cells (BMDCs) to the vascular niche remains poorly characterized. Here we report that hypoxia-inducible factor-1α (HIF-1α) activation upregulates pituitary adenylate cyclase-activating peptide 38 (PACAP38), which in turn activates PACAP type 1 receptor (PAC1) under hypoxia in vitro and cerebral ischemia in vivo. BMDCs homing to endothelial cells in the ischemic brain are mediated by HIF-1α activation of the PACAP38-PAC1 signaling cascade followed by upregulation of cellular prion protein and α6-integrin to enhance the ability of BMDCs to bind laminin in the vascular niche. Exogenous PACAP38 confers a similar effect in facilitating BMDCs homing into the ischemic brain, resulting in reduction of ischemic brain injury. These findings suggest a novel HIF-1α-activated PACAP38-PAC1 signaling process in initiating BMDCs homing into the ischemic brain for reducing brain injury and enhancing functional recovery after ischemic stroke.


Assuntos
Células da Medula Óssea/metabolismo , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/biossíntese , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/biossíntese , Animais , Encéfalo/patologia , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
10.
Mol Pharm ; 13(6): 2117-25, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27169328

RESUMO

The effectiveness of cancer chemotherapy is often circumvented by multidrug resistance (MDR) caused by the overexpression of ATP-binding cassette (ABC) drug transporter ABCB1 (MDR1, P-glycoprotein). Several epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been shown previously capable of modulating the function of ABCB1 and reversing ABCB1-mediated MDR in human cancer cells. Furthermore, some TKIs are transported by ABCB1, which results in low oral bioavailability, reduced distribution, and the development of acquired resistance to these TKIs. In this study, we investigated the interaction between ABCB1 and osimertinib, a novel selective, irreversible third-generation EGFR TKI that has recently been approved by the U.S. Food and Drug Administration. We also evaluated the potential impact of ABCB1 on the efficacy of osimertinib in cancer cells, which can present a therapeutic challenge to clinicians in the future. We revealed that although osimertinib stimulates the ATPase activity of ABCB1, overexpression of ABCB1 does not confer resistance to osimertinib. Our results suggest that it is unlikely that the overexpression of ABCB1 can be a major contributor to the development of osimertinib resistance in cancer patients. More significantly, we revealed an additional action of osimertinib that directly inhibits the function of ABCB1 without affecting the expression level of ABCB1, enhances drug-induced apoptosis, and reverses the MDR phenotype in ABCB1-overexpressing cancer cells. Considering that osimertinib is a clinically approved third-generation EGFR TKI, our findings suggest that a combination therapy with osimertinib and conventional anticancer drugs may be beneficial to patients with MDR tumors.


Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Piperazinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Células K562 , Inibidores de Proteínas Quinases/farmacologia
11.
Mol Pharm ; 13(3): 784-94, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26796063

RESUMO

CUDC-907 is a novel, dual-acting small molecule compound designed to simultaneously inhibit the activity of histone deacetylase (HDAC) and phosphatidylinositol 3-kinase (PI3K). Treatment with CUDC-907 led to sustained inhibition of HDAC and PI3K activity, inhibition of RAF-MEK-MAPK signaling pathway, and inhibition of cancer cell growth. CUDC-907 is currently under evaluation in phase I clinical trials in patients with lymphoma or multiple myeloma, and in patients with advanced solid tumors. However, the risk of developing acquired resistance to CUDC-907 can present a significant therapeutic challenge to clinicians in the future and should be investigated. The overexpression of ATP-binding cassette (ABC) drug transporter ABCB1, ABCC1, or ABCG2 is one of the most common mechanisms of developing multidrug resistance (MDR) in cancers and a major obstacle in chemotherapy. In this study, we reveal that ABCG2 reduces the intracellular accumulation of CUDC-907 and confers significant resistance to CUDC-907, which leads to reduced activity of CUDC-907 to inhibit HDAC and PI3K in human cancer cells. Moreover, although CUDC-907 affects the transport function of ABCG2, it was not potent enough to reverse drug resistance mediated by ABCG2 or affect the expression level of ABCG2 in human cancer cells. Taken together, our findings indicate that ABCG2-mediated CUDC-907 resistance can have serious clinical implications and should be further investigated. More importantly, we demonstrate that the activity of CUDC-907 in ABCG2-overexpressing cancer cells can be restored by inhibiting the function of ABCG2, which provides support for the rationale of combining CUDC-907 with modulators of ABCG2 to improve the pharmacokinetics and efficacy of CUDC-907 in future treatment trials.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Histona Desacetilases/química , Morfolinas/farmacologia , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Pirimidinas/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Histona Desacetilases/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
12.
J Nat Prod ; 79(8): 2135-42, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27504669

RESUMO

The overexpression of ATP-binding cassette (ABC) drug transporter ABCB1 (P-glycoprotein, MDR1) is the most studied mechanism of multidrug resistance (MDR), which remains a major obstacle in clinical cancer chemotherapy. Consequently, resensitizing MDR cancer cells by inhibiting the efflux function of ABCB1 has been considered as a potential strategy to overcome ABCB1-mediated MDR in cancer patients. However, the task of developing a suitable modulator of ABCB1 has been hindered mostly by the lack of selectivity and high intrinsic toxicity of candidate compounds. Considering the wide range of diversity and relatively nontoxic nature of natural products, developing a potential modulator of ABCB1 from natural sources is particularly valuable. Through screening of a large collection of purified bioactive natural products, hernandezine was identified as a potent and selective reversing agent for ABCB1-mediated MDR in cancer cells. Experimental data demonstrated that the bisbenzylisoquinoline alkaloid hernandezine is selective for ABCB1, effectively inhibits the transport function of ABCB1, and enhances drug-induced apoptosis in cancer cells. More importantly, hernandezine significantly resensitizes ABCB1-overexpressing cancer cells to multiple chemotherapeutic drugs at nontoxic, nanomolar concentrations. Collectively, these findings reveal that hernandezine has great potential to be further developed into a novel reversal agent for combination therapy in MDR cancer patients.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Benzilisoquinolinas/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina , Alcaloides/farmacologia , Humanos , Estrutura Molecular
13.
J Transl Med ; 13: 389, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26711814

RESUMO

BACKGROUND: Cycling hypoxia is a well-recognized phenomenon within animal and human solid tumors. It contributes to the resistance to cytotoxic therapies through anti-apoptotic effects. However, the mechanism underlying cycling hypoxia-mediated anti-apoptosis remains unclear. METHODS: Reactive oxygen species (ROS) production, activation of the hypoxia-inducible factor-1 alpha (HIF-1α) and nuclear factor-κB (NF-κB) signaling pathways, B-cell lymphoma extra-long (Bcl-xL) expression, caspase activation, and apoptosis in in vitro hypoxic stress-treated glioblastoma cells or tumor hypoxic cells derived from human glioblastoma xenografts were determined by in vitro ROS analysis, reporter assay, western blotting analysis, quantitative real-time PCR, caspase-3 activity assay, and annexin V staining assay, respectively. Tempol, a membrane-permeable radical scavenger, Bcl-xL knockdown, and specific inhibitors of HIF-1α and NF-κB were utilized to explore the mechanisms of cycling hypoxia-mediated resistance to temozolomide (TMZ) in vitro and in vivo and to identify potential therapeutic targets. RESULTS: Bcl-xL expression and anti-apoptotic effects were upregulated under cycling hypoxia in glioblastoma cells concomitantly with decreased responses to TMZ through ROS-mediated HIF-1α and NF-κB activation. Tempol, YC-1 (HIF-1 inhibitor), and Bay 11-7082 (NF-κB inhibitor) suppressed the cycling hypoxia-mediated Bcl-xL induction in vitro and in vivo. Bcl-xL knockdown and Tempol treatment inhibited cycling hypoxia-induced chemoresistance. Moreover, Tempol treatment of intracerebral glioblastoma-bearing mice combined with TMZ chemotherapy synergistically suppressed tumor growth and increased survival rate. CONCLUSIONS: Cycling hypoxia-induced Bcl-xL expression via ROS-mediated HIF-1α and NF-κB activation plays an important role in the tumor microenvironment-promoted anti-apoptosis and chemoresistance in glioblastoma. Thus, ROS blockage may be an attractive therapeutic strategy for tumor microenvironment-induced chemoresistance.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Hipóxia , Linfoma de Células B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Masculino , Camundongos , Camundongos Nus
14.
Mol Pharm ; 12(11): 3885-95, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26412161

RESUMO

The overexpression of the serine/threonine specific polo-like kinase 1 (Plk1) is associated with poor prognosis in many types of cancer. Consequently, Plk1 has emerged as a valid therapeutic target for anticancer drug design. Volasertib is a potent inhibitor of Plk1 that inhibits the proliferation of multiple human cancer cell lines by promoting cell cycle arrest at nanomolar concentrations. However, the risk of developing drug resistance, which is often associated with the overexpression of the ATP-binding cassette (ABC) transporter ABCB1 (P-glycoprotein), can present a therapeutic challenge for volasertib and many other therapeutic drugs. Although volasertib is highly effective against the proliferation of numerous cancer cell lines, we found that the overexpression of ABCB1 in cancer cells leads to cellular resistance to volasertib and reduces the level of volasertib-stimulated G2/M cell cycle arrest and subsequent onset of apoptosis. Furthermore, we demonstrate that volasertib competitively inhibits the function of ABCB1 and stimulates the basal ATPase activity of ABCB1 in a concentration-dependent manner, which is consistent with substrate transport by ABCB1. More importantly, we discovered that the coadministration of an inhibitor or drug substrate of ABCB1 restored the anticancer activity of volasertib in ABCB1-overexpressing cancer cells. In conclusion, the results of our study reveal that ABCB1 negatively affects the efficacy of volasertib and supports its combination with a modulator of ABCB1 to improve clinical responses.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pteridinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Quinase 1 Polo-Like
15.
Biomacromolecules ; 16(9): 3021-32, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26286711

RESUMO

Gastric carcinogenesis is a commonly diagnosed type of cancer and has a dismal prognosis because of the rate at which it aggressively spreads and because of the lack of effective therapies to stop its progression. This study evaluated a type of oral drug delivery system of a potential target-activated nanosizer comprising a fucose-conjugated chitosan and polyethylene glycol-conjugated chitosan complex with gelatin containing encapsulated green tea polyphenol extract epigallocatechin-3-gallate, allowing oral administration of the drug through a site-specific release in gastric cancer cells. The results demonstrated that the nanoparticles effectively reduced drug release within gastric acids and that a controlled epigallocatechin-3-gallate release inhibited gastric cancer cell growth, induced cell apoptosis, and reduced vascular endothelial growth factor protein expression. Furthermore, in vivo assay results indicated that the prepared epigallocatechin-3-gallate-loaded fucose-chitosan/polyethylene glycol-chitosan/gelatin nanoparticles significantly affected gastric tumor activity and reduced gastric and liver tissue inflammatory reaction in an orthotopic gastric tumor mouse model.


Assuntos
Catequina/análogos & derivados , Portadores de Fármacos , Nanopartículas/química , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Gástricas/tratamento farmacológico , Administração Oral , Animais , Apoptose , Catequina/química , Catequina/farmacologia , Quitosana/química , Quitosana/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Gelatina/química , Gelatina/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
16.
Emerg Infect Dis ; 20(5): 790-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24751120

RESUMO

After the last reported cases of rabies in a human in 1959 and a nonhuman animal in 1961, Taiwan was considered free from rabies. However, during 2012-2013, an outbreak occurred among ferret badgers in Taiwan. To examine the origin of this virus strain, we sequenced 3 complete genomes and acquired multiple rabies virus (RABV) nucleoprotein and glycoprotein sequences. Phylogeographic analyses demonstrated that the RABV affecting the Taiwan ferret badgers (RABV-TWFB) is a distinct lineage within the group of lineages from Asia and that it has been differentiated from its closest lineages, China I (including isolates from Chinese ferret badgers) and the Philippines, 158-210 years ago. The most recent common ancestor of RABV-TWFB originated 91-113 years ago. Our findings indicate that RABV could be cryptically circulating in the environment. An understanding of the underlying mechanism might shed light on the complex interaction between RABV and its host.


Assuntos
Furões/virologia , Vírus da Raiva/genética , Raiva/epidemiologia , Animais , Evolução Molecular , Variação Genética , Genoma Viral , Dados de Sequência Molecular , Filogenia , Filogeografia , Raiva/virologia , Vírus da Raiva/classificação , Taiwan/epidemiologia
17.
Mol Ecol ; 23(19): 4770-84, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25142551

RESUMO

Dating the time of divergence and understanding speciation processes are central to the study of the evolutionary history of organisms but are notoriously difficult. The difficulty is largely rooted in variations in the ancestral population size or in the genealogy variation across loci. To depict the speciation processes and divergence histories of three monophyletic Takydromus species endemic to Taiwan, we sequenced 20 nuclear loci and combined with one mitochondrial locus published in GenBank. They were analysed by a multispecies coalescent approach within a Bayesian framework. Divergence dating based on the gene tree approach showed high variation among loci, and the divergence was estimated at an earlier date than when derived by the species-tree approach. To test whether variations in the ancestral population size accounted for the majority of this variation, we conducted computer inferences using isolation-with-migration (IM) and approximate Bayesian computation (ABC) frameworks. The results revealed that gene flow during the early stage of speciation was strongly favoured over the isolation model, and the initiation of the speciation process was far earlier than the dates estimated by gene- and species-based divergence dating. Due to their limited dispersal ability, it is suggested that geographical isolation may have played a major role in the divergence of these Takydromus species. Nevertheless, this study reveals a more complex situation and demonstrates that gene flow during the speciation process cannot be overlooked and may have a great impact on divergence dating. By using multilocus data and incorporating Bayesian coalescence approaches, we provide a more biologically realistic framework for delineating the divergence history of Takydromus.


Assuntos
Fluxo Gênico , Especiação Genética , Lagartos/genética , Animais , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Genética Populacional , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA , Taiwan
18.
Mol Phylogenet Evol ; 76: 172-80, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24685497

RESUMO

The sweet potato whitefly, Bemisia tabaci, is a highly differentiated species complex. Despite consisting of several morphologically indistinguishable entities and frequent invasions on all continents with important associated economic losses, the phylogenetic relationships, species status, and evolutionary history of this species complex is still debated. We sequenced and analyzed one mitochondrial and three single-copy nuclear genes from 9 of the 12 genetic groups of B. tabaci and 5 closely related species. Bayesian species delimitation was applied to investigate the speciation events of B. tabaci. The species statuses of the different genetic groups were strongly supported under different prior settings and phylogenetic scenarios. Divergence histories were estimated by a multispecies coalescence approach implemented in (*)BEAST. Based on mitochondrial locus, B. tabaci was originated 6.47 million years ago (MYA). Nevertheless, the time was 1.25MYA based on nuclear loci. According to the method of approximate Bayesian computation, this difference is probably due to different degrees of migration among loci; i.e., although the mitochondrial locus had differentiated, gene flow at nuclear loci was still possible, a scenario similar to parapatric mode of speciation. This is the first study in whiteflies using multilocus data and incorporating Bayesian coalescence approaches, both of which provide a more biologically realistic framework for delimiting species status and delineating the divergence history of B. tabaci. Our study illustrates that gene flow during species divergence should not be overlooked and has a great impact on divergence time estimation.


Assuntos
Evolução Molecular , Especiação Genética , Hemípteros/classificação , Hemípteros/genética , Animais , Sequência de Bases , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Fluxo Gênico/genética , Variação Genética/genética , Modelos Genéticos , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
19.
Mol Pharm ; 11(10): 3727-36, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25192198

RESUMO

Polo-like kinase 1 (Plk1) is a serine/threonine kinase involved in the regulation of mitosis and is overexpressed in many tumor types. Inhibition of Plk1 leads to cell cycle arrest, onset of apoptosis, and cell death, thus Plk1 has emerged as an important target for cancer treatment. GSK461364 is a potent inhibitor of Plk1 that inhibits the proliferation of multiple human cancer cell lines by promoting G2/M cell cycle arrest at low concentrations. However, as is the case for many therapeutic drugs, the risk of developing drug resistance to GSK461364 can present a therapeutic challenge to clinicians. Since the overexpression of ATP-binding cassette (ABC) drug transporter ABCB1 is one of the most common mechanisms of drug resistance, we aimed to investigate the effect of ABCB1 on the cellular efficacy of GSK461364. In this study, we observed a significantly reduced activity of GSK461364 in cells overexpressing human ABCB1. We showed that GSK461364 stimulates the ABCB1 ATPase activity and competitively inhibits ABCB1-mediated efflux of calcein-AM in a concentration-dependent manner. Moreover, as a way to assess the impact of ABCB1 on the efficacy of GSK461364, we evaluated the G2/M cell cycle arrest and apoptosis induced by GSK461364. We discovered that, by inhibiting the function of ABCB1, the reduced G2/M cell cycle arrest, apoptosis, and sensitivity to GSK461364 treatment in ABCB1-overexpressing cells can be significantly restored. In conclusion, in order to achieve a better therapeutic outcome, combination therapy of GSK461364 with a modulator of ABCB1 should be further investigated as a potential treatment approach.


Assuntos
Benzimidazóis/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Tiofenos/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Quinase 1 Polo-Like
20.
Am J Cancer Res ; 14(5): 2424-2438, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859862

RESUMO

The inhibitor of DNA-binding 2 (ID2) plays a major role in tumor dedifferentiation in non-small cell lung cancer (NSCLC). Studies have indicated an inverse correlation between ID2 expression and NSCLC cell invasiveness. However, the mechanisms through which ID2 activation is regulated are currently unclear. We overexpressed ID2 in H1299 cells and extensively characterized their cellular behaviors. By employing a serial deletion approach combined with a reporter assay, we pinpointed the basal promoter region of ID2. We also examined the DNA methylation status of the ID2 promoter to elucidate the epigenetic mechanisms driving ID2 regulation. Our results revealed that ID2 overexpression effectively inhibited the migration, invasion, proliferation, and colony formation abilities of H1299 cells. The region from -243 to +202 played a major role in driving the transcriptional activity of ID2. Sequence analysis results indicated that the transcription factor Yin Yang 1 (YY1) might be crucial in the regulation of ID2 expression. The ectopically expressed YY1 activated both the expression levels of ID2 and the transcriptional activity of the ID2 promoter, potentially contributing to its repressive activity on cancer cell growth. Furthermore, site-directed mutagenesis and chromatin immunoprecipitation assays revealed that YY1 may target the -120 and -76 sites of the ID2 promoter, thereby activating its transcriptional activity. The ID2 promoter regions were also fully methylated in CL1-5 cells, and the methylation level was correlated with the expression levels of the ID2 promoter. Moreover, the YY1-induced suppression of colony formation was counteracted by ID2 knockdown, which suggests that YY1 represses cell colony growth through the regulation of ID2. Our results indicate that YY1 plays a role in transactivating ID2 expression and might also contribute to the repression of colony growth through the regulation of ID2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA