Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 149(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36268933

RESUMO

The embryonic neural tube is the origin of the entire adult nervous system, and disturbances in its development cause life-threatening birth defects. However, the study of mammalian neural tube development is limited by the lack of physiologically realistic three-dimensional (3D) in vitro models. Here, we report a self-organizing 3D neural tube organoid model derived from single mouse embryonic stem cells that exhibits an in vivo-like tissue architecture, cell type composition and anterior-posterior (AP) patterning. Moreover, maturation of the neural tube organoids showed the emergence of multipotent neural crest cells and mature neurons. Single-cell transcriptome analyses revealed the sequence of transcriptional events in the emergence of neural crest cells and neural differentiation. Thanks to the accessibility of this model, phagocytosis of migrating neural crest cells could be observed in real time for the first time in a mammalian model. We thus introduce a tractable in vitro model to study some of the key morphogenetic and cell type derivation events during early neural development.


Assuntos
Tubo Neural , Organoides , Camundongos , Animais , Crista Neural , Desenvolvimento Embrionário , Neurogênese , Diferenciação Celular , Mamíferos
2.
BMC Biotechnol ; 18(1): 81, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30587177

RESUMO

BACKGROUND: The methanol-regulated AOX1 promoter (PAOX1) is the most widely used promoter in the production of recombinant proteins in the methylotrophic yeast Pichia pastoris. However, as the tight regulation and methanol dependence of PAOX1 restricts its application, it is necessary to develop a flexible induction system to avoid the problems of methanol without losing the advantages of PAOX1. The availability of synthetic biology tools enables researchers to reprogram the cellular behaviour of P. pastoris to achieve this goal. RESULTS: The characteristics of PAOX1 are highly related to the expression profile of methanol expression regulator 1 (Mxr1). In this study, we applied a biologically inspired strategy to reprogram regulatory networks in P. pastoris. A reprogrammed P. pastoris was constructed by inserting a synthetic positive feedback circuit of Mxr1 driven by a weak AOX2 promoter (PAOX2). This novel approach enhanced PAOX1 efficiency by providing extra Mxr1 and generated switchable Mxr1 expression to allow PAOX1 to be induced under glycerol starvation or carbon-free conditions. Additionally, the inhibitory effect of glycerol on PAOX1 was retained because the synthetic circuit was not activated in response to glycerol. Using green fluorescent protein as a demonstration, this reprogrammed P. pastoris strain displayed stronger fluorescence intensity than non-reprogrammed cells under both methanol induction and glycerol starvation. Moreover, with single-chain variable fragment (scFv) as the model protein, increases in extracellular scFv productivity of 98 and 269% were observed in Mxr1-reprogrammed cells under methanol induction and glycerol starvation, respectively, compared to productivity in non-reprogrammed cells under methanol induction. CONCLUSIONS: We successfully demonstrate that the synthetic positive feedback circuit of Mxr1 enhances recombinant protein production efficiency in P. pastoris and create a methanol-free induction system to eliminate the potential risks of methanol.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Pichia/genética , Regiões Promotoras Genéticas , Retroalimentação Fisiológica , Proteínas Fúngicas/metabolismo , Glicerol/metabolismo , Metanol/metabolismo , Pichia/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Cell Rep Methods ; 2(7): 100244, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35880022

RESUMO

We present a low-cost, do-it-yourself system for complex mammalian cell culture under dynamically changing medium formulations by integrating conventional multi-well tissue culture plates with simple microfluidic control and system automation. We demonstrate the generation of complex concentration profiles, enabling the investigation of sophisticated input-response relations. We further apply our automated cell-culturing platform to the dynamic stimulation of two widely employed stem-cell-based in vitro models for early mammalian development: the conversion of naive mouse embryonic stem cells into epiblast-like cells and mouse 3D gastruloids. Performing automated medium-switch experiments, we systematically investigate cell fate commitment along the developmental trajectory toward mouse epiblast fate and examine symmetry-breaking, germ layer formation, and cardiac differentiation in mouse 3D gastruloids as a function of time-varying Wnt pathway activation. With these proof-of-principle examples, we demonstrate a highly versatile and scalable tool that can be adapted to specific research questions, experimental demands, and model systems.


Assuntos
Camadas Germinativas , Células-Tronco , Animais , Camundongos , Diferenciação Celular/fisiologia , Células Cultivadas , Organoides , Mamíferos
4.
Cell Rep Methods ; 2(10): 100310, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36313801

RESUMO

[This corrects the article DOI: 10.1016/j.crmeth.2022.100244.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA