Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36678740

RESUMO

Nanoprobes provide advantages for real-time monitoring of tumor markers and tumorigenesis during cancer progression and development. Epidermal growth factor receptor (EGFR) is a key protein that plays crucial roles for tumorigenesis and cancer therapy of lung cancers. Here, we show a carbon-based nanoprobe, nanodiamond (ND), which can be applied for targeting EGFR and monitoring tumorigenesis of human lung cancer cells in vitro and in vivo. The optimal fluorescent intensities of ND particles were observed in the human lung cancer cells and nude mice under in vivo imaging system. The fluorescence signal of ND particles can be real-time detected in the xenografted human lung tumor formation of nude mice. Moreover, the ND-conjugated specific EGFR antibody cetuximab (Cet) can track the location and distribution of EGFR proteins of lung cancer cells in vitro and in vivo. ND-Cet treatment increased cellular uptake ability of nanocomposites in the EGFR-expressed cells but not in the EGFR-negative lung cancer cells. Interestingly, single ND-Cet complex can be directly observed on the protein G bead by immunoprecipitation and confocal microscopy. Besides, the EGFR proteins were transported to lysosomes for degradation. Together, this study demonstrates that ND-conjugated Cet can apply for targeting EGFR and monitoring tumorigenesis during lung cancer progression and therapy.

2.
Sci Rep ; 4: 5004, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24830447

RESUMO

Nanodiamond is a promising carbon nanomaterial developed for biomedical applications. Here, we show fluorescent nanodiamond (FND) with the biocompatible properties that can be used for the labeling and tracking of neuronal differentiation and neuron cells derived from embryonal carcinoma stem (ECS) cells. The fluorescence intensities of FNDs were increased by treatment with FNDs in both the mouse P19 and human NT2/D1 ECS cells. FNDs were taken into ECS cells; however, FNDs did not alter the cellular morphology and growth ability. Moreover, FNDs did not change the protein expression of stem cell marker SSEA-1 of ECS cells. The neuronal differentiation of ECS cells could be induced by retinoic acid (RA). Interestingly, FNDs did not affect on the morphological alteration, cytotoxicity and apoptosis during the neuronal differentiation. Besides, FNDs did not alter the cell viability and the expression of neuron-specific marker ß-III-tubulin in these differentiated neuron cells. The existence of FNDs in the neuron cells can be identified by confocal microscopy and flow cytometry. Together, FND is a biocompatible and readily detectable nanomaterial for the labeling and tracking of neuronal differentiation process and neuron cells from stem cells.


Assuntos
Materiais Biocompatíveis/metabolismo , Diferenciação Celular/fisiologia , Nanodiamantes/química , Neurônios/metabolismo , Neurônios/fisiologia , Animais , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Biomarcadores/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fluorescência , Humanos , Antígenos CD15/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/fisiologia , Tretinoína/metabolismo , Tubulina (Proteína)/metabolismo
3.
Biomaterials ; 33(26): 6172-85, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22672836

RESUMO

Nanodiamond, a promising carbon nanomaterial, develops for biomedical applications such as cancer cell labeling and detection. Here, we establish the nanodiamond-bearing cancer cell lines using the fluorescent and magnetic nanodiamond (FMND). Treatment with FMND particles did not significantly induce cytotoxicity and growth inhibition in HFL-1 normal lung fibroblasts and A549 lung cancer cells. The fluorescence intensities and particle complexities were increased in a time- and concentration-dependent manner by treatment with FMND particles in lung cancer cells; however, the existence of FMND particles inside the cells did not alter cellular size distribution. The FMND-bearing lung cancer cells could be separated by the fluorescent and magnetic properties of FMNDs using the flow cytometer and magnetic device, respectively. The FMND-bearing cancer cells were identified by the existence of FMNDs using flow cytometer and confocal microscope analysis. More importantly, the cell morphology, viability, growth ability and total protein expression profiles in the FMND-bearing cells were similar to those of the parental cells. The separated FMND-bearing cells with various generations were cryopreservation for further applications. After re-thawing the FMND-bearing cancer cell lines, the cells still retained the cell survival and growth ability. Additionally, a variety of human cancer types including colon (RKO), breast (MCF-7), cervical (HeLa), and bladder (BFTC905) cancer cells could be used the same strategy to prepare the FMND-bearing cancer cells. These results show that the FMND-bearing cancer cell lines, which reserve the parental cell functions, can be applied for specific cancer cell labeling and tracking.


Assuntos
Fluorescência , Magnetismo , Nanodiamantes , Linhagem Celular Tumoral , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Células HeLa , Humanos , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA