Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 156(1-2): 343-58, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24439387

RESUMO

Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms.


Assuntos
Diabetes Mellitus Tipo 2/genética , Polimorfismo de Nucleotídeo Único , Animais , Linhagem Celular , Células Cultivadas , Sequência Conservada , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Proteínas de Homeodomínio/metabolismo , Humanos , Resistência à Insulina , PPAR gama/genética , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo
2.
Nature ; 622(7982): 329-338, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37794186

RESUMO

The Pharma Proteomics Project is a precompetitive biopharmaceutical consortium characterizing the plasma proteomic profiles of 54,219 UK Biobank participants. Here we provide a detailed summary of this initiative, including technical and biological validations, insights into proteomic disease signatures, and prediction modelling for various demographic and health indicators. We present comprehensive protein quantitative trait locus (pQTL) mapping of 2,923 proteins that identifies 14,287 primary genetic associations, of which 81% are previously undescribed, alongside ancestry-specific pQTL mapping in non-European individuals. The study provides an updated characterization of the genetic architecture of the plasma proteome, contextualized with projected pQTL discovery rates as sample sizes and proteomic assay coverages increase over time. We offer extensive insights into trans pQTLs across multiple biological domains, highlight genetic influences on ligand-receptor interactions and pathway perturbations across a diverse collection of cytokines and complement networks, and illustrate long-range epistatic effects of ABO blood group and FUT2 secretor status on proteins with gastrointestinal tissue-enriched expression. We demonstrate the utility of these data for drug discovery by extending the genetic proxied effects of protein targets, such as PCSK9, on additional endpoints, and disentangle specific genes and proteins perturbed at loci associated with COVID-19 susceptibility. This public-private partnership provides the scientific community with an open-access proteomics resource of considerable breadth and depth to help to elucidate the biological mechanisms underlying proteo-genomic discoveries and accelerate the development of biomarkers, predictive models and therapeutics1.


Assuntos
Bancos de Espécimes Biológicos , Proteínas Sanguíneas , Bases de Dados Factuais , Genômica , Saúde , Proteoma , Proteômica , Humanos , Sistema ABO de Grupos Sanguíneos/genética , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/genética , COVID-19/genética , Descoberta de Drogas , Epistasia Genética , Fucosiltransferases/metabolismo , Predisposição Genética para Doença , Plasma/química , Pró-Proteína Convertase 9/metabolismo , Proteoma/análise , Proteoma/genética , Parcerias Público-Privadas , Locos de Características Quantitativas , Reino Unido , Galactosídeo 2-alfa-L-Fucosiltransferase
3.
PLoS Genet ; 18(11): e1010496, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36346812

RESUMO

Bone and muscle are coupled through developmental, mechanical, paracrine, and autocrine signals. Genetic variants at the CPED1-WNT16 locus are dually associated with bone- and muscle-related traits. While Wnt16 is necessary for bone mass and strength, this fails to explain pleiotropy at this locus. Here, we show wnt16 is required for spine and muscle morphogenesis in zebrafish. In embryos, wnt16 is expressed in dermomyotome and developing notochord, and contributes to larval myotome morphology and notochord elongation. Later, wnt16 is expressed at the ventral midline of the notochord sheath, and contributes to spine mineralization and osteoblast recruitment. Morphological changes in wnt16 mutant larvae are mirrored in adults, indicating that wnt16 impacts bone and muscle morphology throughout the lifespan. Finally, we show that wnt16 is a gene of major effect on lean mass at the CPED1-WNT16 locus. Our findings indicate that Wnt16 is secreted in structures adjacent to developing bone (notochord) and muscle (dermomyotome) where it affects the morphogenesis of each tissue, thereby rendering wnt16 expression into dual effects on bone and muscle morphology. This work expands our understanding of wnt16 in musculoskeletal development and supports the potential for variants to act through WNT16 to influence bone and muscle via parallel morphogenetic processes.


Assuntos
Notocorda , Peixe-Zebra , Animais , Peixe-Zebra/genética , Coluna Vertebral , Músculos , Morfogênese/genética , Larva , Proteínas de Peixe-Zebra/genética , Proteínas Wnt/genética
4.
BMC Microbiol ; 24(1): 139, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658841

RESUMO

BACKGROUND: Gastric cancer is one of the global health concerns. A series of studies on the stomach have confirmed the role of the microbiome in shaping gastrointestinal diseases. Delineation of microbiome signatures to distinguish chronic gastritis from gastric cancer will provide a non-invasive preventative and treatment strategy. In this study, we performed whole metagenome shotgun sequencing of fecal samples to enhance the detection of rare bacterial species and increase genome sequence coverage. Additionally, we employed multiple bioinformatics approaches to investigate the potential targets of the microbiome as an indicator of differentiating gastric cancer from chronic gastritis. RESULTS: A total of 65 patients were enrolled, comprising 33 individuals with chronic gastritis and 32 with gastric cancer. Within each group, the chronic gastritis group was sub-grouped into intestinal metaplasia (n = 15) and non-intestinal metaplasia (n = 18); the gastric cancer group, early stage (stages 1 and 2, n = 13) and late stage (stages 3 and 4, n = 19) cancer. No significant differences in alpha and beta diversities were detected among the patient groups. However, in a two-group univariate comparison, higher Fusobacteria abundance was identified in phylum; Fusobacteria presented higher abundance in gastric cancer (LDA scored 4.27, q = 0.041 in LEfSe). Age and sex-adjusted MaAsLin and Random Forest variable of importance (VIMP) analysis in species provided meaningful features; Bacteria_caccae was the most contributing species toward gastric cancer and late-stage cancer (beta:2.43, se:0.891, p:0.008, VIMP score:2.543). In contrast, Bifidobacterium_longum significantly contributed to chronic gastritis (beta:-1.8, se:0.699, p:0.009, VIMP score:1.988). Age, sex, and BMI-adjusted MasAsLin on metabolic pathway analysis showed that GLCMANNANAUT-PWY degradation was higher in gastric cancer and one of the contributing species was Fusobacterium_varium. CONCLUSION: Microbiomes belonging to the pathogenic phylum Fusobacteria and species Bacteroides_caccae and Streptococcus_anginosus can be significant targets for monitoring the progression of gastric cancer. Whereas Bifidobacterium_longum and Lachnospiraceae_bacterium_5_1_63FAA might be protection biomarkers against gastric cancer.


Assuntos
Bactérias , Fezes , Gastrite , Metagenoma , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Gastrite/microbiologia , Fezes/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Idoso , Microbioma Gastrointestinal/genética , Adulto
5.
Mol Psychiatry ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433967

RESUMO

Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental health disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N = 2367) and replicated in the combined PsyCourse (N = 89) and BipoLife (N = 102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P < 0.05. Li+PGS was positively associated with lithium treatment response in the ConLi+Gen cohort, in both the categorical (P = 9.8 × 10-12, R2 = 1.9%) and continuous (P = 6.4 × 10-9, R2 = 2.6%) outcomes. Compared to bipolar patients in the 1st decile of the risk distribution, individuals in the 10th decile had 3.47-fold (95%CI: 2.22-5.47) higher odds of responding favorably to lithium. The results were replicated in the independent cohorts for the categorical treatment outcome (P = 3.9 × 10-4, R2 = 0.9%), but not for the continuous outcome (P = 0.13). Gene-based analyses revealed 36 candidate genes that are enriched in biological pathways controlled by glutamate and acetylcholine. Li+PGS may be useful in the development of pharmacogenomic testing strategies by enabling a classification of bipolar patients according to their response to treatment.

6.
J Bone Miner Metab ; 42(3): 335-343, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38801451

RESUMO

INTRODUCTION: Patients with multiple sclerosis (MS) commonly present musculoskeletal disorders characterized by lower bone mineral density (BMD) and muscle weakness. However, the underlying etiology remains unclear. Our objective is to identify shared pleiotropic genetic effects and estimate the causal relationship between MS and musculoskeletal disorders. MATERIALS AND METHODS: We conducted linkage disequilibrium score regression (LDSR), colocalization, and Mendelian randomization (MR) analyses using summary statistics from recent large-scale genome-wide association studies (GWAS), encompassing MS, falls, fractures, and frailty. Additional MR analyses explored the causal relationship with musculoskeletal risk factors, such as BMD, lean mass, grip strength, and vitamin D. RESULTS: We observed a moderate genetic correlation between MS and falls (RG = 0.10, P-value = 0.01) but not between MS with fracture or frailty in the LDSR analyses. MR revealed MS had no causal association with fracture and frailty but a moderate association with falls (OR: 1.004, FDR q-value = 0.018). We further performed colocalization analyses using nine SNPs that exhibited significant associations with both MS and falls in MR. Two SNPs (rs7731626 on ANKRD55 and rs701006 on OS9 gene) showed higher posterior probability of colocalization (PP.H4 = 0.927), suggesting potential pleiotropic effects between MS and falls. The nine genes are associated with central nervous system development and inflammation signaling pathways. CONCLUSION: We found potential pleiotropic genetic effects between MS and falls. However, our analysis did not reveal a causal relationship between MS and increased risks of falls, fractures, or frailty. This suggests that the musculoskeletal disorders frequently reported in MS patients in clinical studies are more likely attributed to secondary factors associated with disease progression and treatment, rather than being directly caused by MS itself.


Assuntos
Acidentes por Quedas , Fraturas Ósseas , Fragilidade , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Esclerose Múltipla , Polimorfismo de Nucleotídeo Único , Humanos , Esclerose Múltipla/genética , Fragilidade/genética , Fraturas Ósseas/genética , Fraturas Ósseas/epidemiologia , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Densidade Óssea/genética , Desequilíbrio de Ligação/genética , Feminino
7.
J Allergy Clin Immunol ; 152(4): 876-886, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37315813

RESUMO

BACKGROUND: Patients with type-2 (T2) cytokine-low severe asthma often have persistent symptoms despite suppression of T2 inflammation with corticosteroids. OBJECTIVES: We sought to analyze whole blood transcriptome from 738 samples in T2-biomarker-high/-low patients with severe asthma to relate transcriptomic signatures to T2 biomarkers and asthma symptom scores. METHODS: Bulk RNA-seq data were generated for blood samples (baseline, week 24, week 48) from 301 participants recruited to a randomized clinical trial of corticosteroid optimization in severe asthma. Unsupervised clustering, differential gene expression analysis, and pathway analysis were performed. Patients were grouped by T2-biomarker status and symptoms. Associations between clinical characteristics and differentially expressed genes (DEGs) associated with biomarker and symptom levels were investigated. RESULTS: Unsupervised clustering identified 2 clusters; cluster 2 patients were blood eosinophil-low/symptom-high and more likely to be receiving oral corticosteroids (OCSs). Differential gene expression analysis of these clusters, with and without stratification for OCSs, identified 2960 and 4162 DEGs, respectively. Six hundred twenty-seven of 2960 genes remained after adjusting for OCSs by subtracting OCS signature genes. Pathway analysis identified dolichyl-diphosphooligosaccharide biosynthesis and assembly of RNA polymerase I complex as significantly enriched pathways. No stable DEGs were associated with high symptoms in T2-biomarker-low patients, but numerous associated with elevated T2 biomarkers, including 15 that were upregulated at all time points irrespective of symptom level. CONCLUSIONS: OCSs have a considerable effect on whole blood transcriptome. Differential gene expression analysis demonstrates a clear T2-biomarker transcriptomic signature, but no signature was found in association with T2-biomarker-low patients, including those with a high symptom burden.


Assuntos
Asma , Transcriptoma , Humanos , Asma/tratamento farmacológico , Asma/genética , Asma/diagnóstico , Perfilação da Expressão Gênica , Biomarcadores , Corticosteroides/uso terapêutico
8.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240438

RESUMO

Human noroviruses (HuNoV) are major causes of acute gastroenteritis around the world. The high mutation rate and recombination potential of noroviruses are significant challenges in studying the genetic diversity and evolution pattern of novel strains. In this review, we describe recent advances in the development of technologies for not only the detection but also the analysis of complete genome sequences of noroviruses and the future prospects of detection methods for tracing the evolution and genetic diversity of human noroviruses. The mechanisms of HuNoV infection and the development of antiviral drugs have been hampered by failure to develop the infectious virus in a cell model. However, recent studies have demonstrated the potential of reverse genetics for the recovery and generation of infectious viral particles, suggesting the utility of this genetics-based system as an alternative for studying the mechanisms of viral infection, such as cell entry and replication.


Assuntos
Infecções por Caliciviridae , Norovirus , Humanos , Norovirus/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Caliciviridae/genética
9.
Br J Psychiatry ; : 1-10, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35225756

RESUMO

BACKGROUND: Response to lithium in patients with bipolar disorder is associated with clinical and transdiagnostic genetic factors. The predictive combination of these variables might help clinicians better predict which patients will respond to lithium treatment. AIMS: To use a combination of transdiagnostic genetic and clinical factors to predict lithium response in patients with bipolar disorder. METHOD: This study utilised genetic and clinical data (n = 1034) collected as part of the International Consortium on Lithium Genetics (ConLi+Gen) project. Polygenic risk scores (PRS) were computed for schizophrenia and major depressive disorder, and then combined with clinical variables using a cross-validated machine-learning regression approach. Unimodal, multimodal and genetically stratified models were trained and validated using ridge, elastic net and random forest regression on 692 patients with bipolar disorder from ten study sites using leave-site-out cross-validation. All models were then tested on an independent test set of 342 patients. The best performing models were then tested in a classification framework. RESULTS: The best performing linear model explained 5.1% (P = 0.0001) of variance in lithium response and was composed of clinical variables, PRS variables and interaction terms between them. The best performing non-linear model used only clinical variables and explained 8.1% (P = 0.0001) of variance in lithium response. A priori genomic stratification improved non-linear model performance to 13.7% (P = 0.0001) and improved the binary classification of lithium response. This model stratified patients based on their meta-polygenic loadings for major depressive disorder and schizophrenia and was then trained using clinical data. CONCLUSIONS: Using PRS to first stratify patients genetically and then train machine-learning models with clinical predictors led to large improvements in lithium response prediction. When used with other PRS and biological markers in the future this approach may help inform which patients are most likely to respond to lithium treatment.

10.
Mol Psychiatry ; 26(6): 2457-2470, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32203155

RESUMO

Lithium is a first-line medication for bipolar disorder (BD), but only one in three patients respond optimally to the drug. Since evidence shows a strong clinical and genetic overlap between depression and bipolar disorder, we investigated whether a polygenic susceptibility to major depression is associated with response to lithium treatment in patients with BD. Weighted polygenic scores (PGSs) were computed for major depression (MD) at different GWAS p value thresholds using genetic data obtained from 2586 bipolar patients who received lithium treatment and took part in the Consortium on Lithium Genetics (ConLi+Gen) study. Summary statistics from genome-wide association studies in MD (135,458 cases and 344,901 controls) from the Psychiatric Genomics Consortium (PGC) were used for PGS weighting. Response to lithium treatment was defined by continuous scores and categorical outcome (responders versus non-responders) using measurements on the Alda scale. Associations between PGSs of MD and lithium treatment response were assessed using a linear and binary logistic regression modeling for the continuous and categorical outcomes, respectively. The analysis was performed for the entire cohort, and for European and Asian sub-samples. The PGSs for MD were significantly associated with lithium treatment response in multi-ethnic, European or Asian populations, at various p value thresholds. Bipolar patients with a low polygenic load for MD were more likely to respond well to lithium, compared to those patients with high polygenic load [lowest vs highest PGS quartiles, multi-ethnic sample: OR = 1.54 (95% CI: 1.18-2.01) and European sample: OR = 1.75 (95% CI: 1.30-2.36)]. While our analysis in the Asian sample found equivalent effect size in the same direction: OR = 1.71 (95% CI: 0.61-4.90), this was not statistically significant. Using PGS decile comparison, we found a similar trend of association between a high genetic loading for MD and lower response to lithium. Our findings underscore the genetic contribution to lithium response in BD and support the emerging concept of a lithium-responsive biotype in BD.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Depressão , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Estudo de Associação Genômica Ampla , Humanos , Lítio/uso terapêutico
11.
Mol Psychiatry ; 25(7): 1420-1429, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-30626913

RESUMO

Although a genetic basis of depression has been well established in twin studies, identification of genome-wide significant loci has been difficult. We hypothesized that bivariate analyses of findings from a meta-analysis of genome-wide association studies (meta-GWASs) of the broad depression phenotype with those from meta-GWASs of self-reported and recurrent major depressive disorder (MDD), bipolar disorder and schizophrenia would enhance statistical power to identify novel genetic loci for depression. LD score regression analyses were first used to estimate the genetic correlations of broad depression with self-reported MDD, recurrent MDD, bipolar disorder and schizophrenia. Then, we performed four bivariate GWAS analyses. The genetic correlations (rg ± SE) of broad depression with self-reported MDD, recurrent MDD, bipolar disorder and schizophrenia were 0.79 ± 0.07, 0.24 ± 0.08, 0.53 ± 0.09 and 0.57 ± 0.05, respectively. From a total of 20 independent genome-wide significant loci, 13 loci replicated of which 8 were novel for depression. These were MUC21 for the broad depression phenotype with self-reported MDD and ZNF804A, MIR3143, PSORS1C2, STK19, SPATA31D1, RTN1 and TCF4 for the broad depression phenotype with schizophrenia. Post-GWAS functional analyses of these loci revealed their potential biological involvement in psychiatric disorders. Our results emphasize the genetic similarities among different psychiatric disorders and indicate that cross-disorder analyses may be the best way forward to accelerate gene finding for depression, or psychiatric disorders in general.


Assuntos
Transtorno Bipolar/genética , Depressão/genética , Transtorno Depressivo Maior/genética , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Esquizofrenia/genética , Feminino , Humanos , Masculino , Fenótipo , Autorrelato
12.
Nature ; 526(7571): 112-7, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26367794

RESUMO

The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 × 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 × 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 × 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.


Assuntos
Densidade Óssea/genética , Fraturas Ósseas/genética , Genoma Humano/genética , Proteínas de Homeodomínio/genética , Animais , Osso e Ossos/metabolismo , Modelos Animais de Doenças , Europa (Continente)/etnologia , Exoma/genética , Feminino , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Genômica , Genótipo , Humanos , Camundongos , Análise de Sequência de DNA , População Branca/genética , Proteínas Wnt/genética
13.
Am J Hum Genet ; 101(2): 227-238, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28757204

RESUMO

Vitamin D insufficiency is common, correctable, and influenced by genetic factors, and it has been associated with risk of several diseases. We sought to identify low-frequency genetic variants that strongly increase the risk of vitamin D insufficiency and tested their effect on risk of multiple sclerosis, a disease influenced by low vitamin D concentrations. We used whole-genome sequencing data from 2,619 individuals through the UK10K program and deep-imputation data from 39,655 individuals genotyped genome-wide. Meta-analysis of the summary statistics from 19 cohorts identified in CYP2R1 the low-frequency (minor allele frequency = 2.5%) synonymous coding variant g.14900931G>A (p.Asp120Asp) (rs117913124[A]), which conferred a large effect on 25-hydroxyvitamin D (25OHD) levels (-0.43 SD of standardized natural log-transformed 25OHD per A allele; p value = 1.5 × 10-88). The effect on 25OHD was four times larger and independent of the effect of a previously described common variant near CYP2R1. By analyzing 8,711 individuals, we showed that heterozygote carriers of this low-frequency variant have an increased risk of vitamin D insufficiency (odds ratio [OR] = 2.2, 95% confidence interval [CI] = 1.78-2.78, p = 1.26 × 10-12). Individuals carrying one copy of this variant also had increased odds of multiple sclerosis (OR = 1.4, 95% CI = 1.19-1.64, p = 2.63 × 10-5) in a sample of 5,927 case and 5,599 control subjects. In conclusion, we describe a low-frequency CYP2R1 coding variant that exerts the largest effect upon 25OHD levels identified to date in the general European population and implicates vitamin D in the etiology of multiple sclerosis.


Assuntos
Colestanotriol 26-Mono-Oxigenase/genética , Família 2 do Citocromo P450/genética , Predisposição Genética para Doença/genética , Esclerose Múltipla/genética , Deficiência de Vitamina D/diagnóstico , Deficiência de Vitamina D/genética , Vitamina D/análogos & derivados , Frequência do Gene , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Humanos , Esclerose Múltipla/etiologia , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Vitamina D/sangue
14.
Immunogenetics ; 72(5): 295-304, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32577798

RESUMO

Tumor-specific neoantigens are mutated self-peptides presented by tumor cell major histocompatibility complex (MHC) molecules and are necessary to elicit host's anti-cancer cytotoxic T cell responses. It could be specifically recognized by neoantigen-specific T cell receptors (TCRs). However, current wet-lab assays for identifying peptide MHC binding are too expensive and time-consuming to meet the clinical needs. In this study, we developed an in silico method with a deep convolutional neural network (CNN) model, iConMHC, to predict peptide MHC binding affinity. Unlike other in silico methods that only learn from properties of amino acid in neoantigen peptides alone and/or MHCs alone, iConMHC learns from physical and chemical interaction properties between pairwise amino acids from the two molecules. These properties, such as contact potentials and distances in folded proteins, directly affect neoantigen-MHC binding affinity. In addition, IConMHC is a pan-allele model that is capable of making predictions for all the MHC alleles. Even for those rare MHC alleles without training data, iConMHC can make predictions with reasonable accuracy. We benchmarked iConMHC with other commonly used MHC-I binding predictors and found our model performs better than most of the pan-allele models.


Assuntos
Aprendizado Profundo , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/metabolismo , Alelos , Sequência de Aminoácidos , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Simulação por Computador , Bases de Dados de Proteínas , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Redes Neurais de Computação , Peptídeos/química , Ligação Proteica , Reprodutibilidade dos Testes
15.
Mol Psychiatry ; 23(11): 2133-2144, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29311653

RESUMO

Cognitive functions are important correlates of health outcomes across the life-course. Individual differences in cognitive functions are partly heritable. Epigenetic modifications, such as DNA methylation, are susceptible to both genetic and environmental factors and may provide insights into individual differences in cognitive functions. Epigenome-wide meta-analyses for blood-based DNA methylation levels at ~420,000 CpG sites were performed for seven measures of cognitive functioning using data from 11 cohorts. CpGs that passed a Bonferroni correction, adjusting for the number of CpGs and cognitive tests, were assessed for: longitudinal change; being under genetic control (methylation QTLs); and associations with brain health (structural MRI), brain methylation and Alzheimer's disease pathology. Across the seven measures of cognitive functioning (meta-analysis n range: 2557-6809), there were epigenome-wide significant (P < 1.7 × 10-8) associations for global cognitive function (cg21450381, P = 1.6 × 10-8), and phonemic verbal fluency (cg12507869, P = 2.5 × 10-9). The CpGs are located in an intergenic region on chromosome 12 and the INPP5A gene on chromosome 10, respectively. Both probes have moderate correlations (~0.4) with brain methylation in Brodmann area 20 (ventral temporal cortex). Neither probe showed evidence of longitudinal change in late-life or associations with white matter brain MRI measures in one cohort with these data. A methylation QTL analysis suggested that rs113565688 was a cis methylation QTL for cg12507869 (P = 5 × 10-5 and 4 × 10-13 in two lookup cohorts). We demonstrate a link between blood-based DNA methylation and measures of phonemic verbal fluency and global cognitive ability. Further research is warranted to understand the mechanisms linking genomic regulatory changes with cognitive function to health and disease.


Assuntos
Cognição/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Genômica , Humanos , Masculino , Pessoa de Meia-Idade
16.
J Neural Transm (Vienna) ; 126(1): 35-45, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30610379

RESUMO

Selective serotonin reuptake inhibitors (SSRIs) are first-line antidepressants for the treatment of major depressive disorder (MDD). However, treatment response during an initial therapeutic trial is often poor and is difficult to predict. Heterogeneity of response to SSRIs in depressed patients is partly driven by co-occurring somatic disorders such as coronary artery disease (CAD) and obesity. CAD and obesity may also be associated with metabolic side effects of SSRIs. In this study, we assessed the association of CAD and obesity with treatment response to SSRIs in patients with MDD using a polygenic score (PGS) approach. Additionally, we performed cross-trait meta-analyses to pinpoint genetic variants underpinnings the relationship of CAD and obesity with SSRIs treatment response. First, PGSs were calculated at different p value thresholds (PT) for obesity and CAD. Next, binary logistic regression was applied to evaluate the association of the PGSs to SSRIs treatment response in a discovery sample (ISPC, N = 865), and in a replication cohort (STAR*D, N = 1,878). Finally, a cross-trait GWAS meta-analysis was performed by combining summary statistics. We show that the PGSs for CAD and obesity were inversely associated with SSRIs treatment response. At the most significant thresholds, the PGS for CAD and body mass index accounted 1.3%, and 0.8% of the observed variability in treatment response to SSRIs, respectively. In the cross-trait meta-analyses, we identified (1) 14 genetic loci (including NEGR1, CADM2, PMAIP1, PARK2) that are associated with both obesity and SSRIs treatment response; (2) five genetic loci (LINC01412, PHACTR1, CDKN2B, ATXN2, KCNE2) with effects on CAD and SSRIs treatment response. Our findings implicate that the genetic variants of CAD and obesity are linked to SSRIs treatment response in MDD. A better SSRIs treatment response might be achieved through a stratified allocation of treatment for MDD patients with a genetic risk for obesity or CAD.


Assuntos
Doença da Artéria Coronariana/genética , Transtorno Depressivo Maior/tratamento farmacológico , Obesidade/genética , Avaliação de Resultados em Cuidados de Saúde , Variantes Farmacogenômicos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Adolescente , Adulto , Idoso , Índice de Massa Corporal , Comorbidade , Doença da Artéria Coronariana/epidemiologia , Transtorno Depressivo Maior/epidemiologia , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Adulto Jovem
17.
Hum Mol Genet ; 25(23): 5234-5243, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27616567

RESUMO

Background: Bone mineral density (BMD) is a heritable phenotype that predicts fracture risk. We performed fine-mapping by targeted sequencing at WLS, MEF2C, ARHGAP1/F2 and JAG1 loci prioritized by eQTL and bioinformatic approaches among 56 BMD loci from our previous GWAS meta-analysis. Targeted sequencing was conducted in 1,291 Caucasians from the Framingham Heart Study ( n = 925) and Cardiovascular Health Study ( n = 366), including 206 women and men with extreme low femoral neck (FN) BMD. A total of 4,964 sequence variants (SNVs) were observed and 80% were rare with MAF <1%. The associations between previously identified SNPs in these loci and BMD, while nominally significant in sequenced participants, were no longer significant after multiple testing corrections. Conditional analyses did not find protein-coding variants that may be responsible for GWAS signals. On the other hand, in the sequenced subjects, we identified novel associations in WLS , ARHGAP1 , and 5' of MEF2C ( P- values < 8x10 - 5 ; false discovery rate (FDR) q-values < 0.01) that were much more strongly associated with BMD compared to the GWAS SNPs. These associated SNVs are less-common; independent from previous GWAS signals in the same loci; and located in gene regulatory elements. Our findings suggest that protein-coding variants in selected GWAS loci did not contribute to GWAS signals. By performing targeted sequencing in GWAS loci, we identified less-common and rare non-coding SNVs associated with BMD independently from GWAS common SNPs, suggesting both common and less-common variants may associate with disease risks and phenotypes in the same loci.


Assuntos
Densidade Óssea/genética , Doenças Cardiovasculares/genética , Proteínas Ativadoras de GTPase/genética , Envelhecimento/genética , Envelhecimento/patologia , Doenças Cardiovasculares/patologia , Estudos de Coortes , Estudos Epidemiológicos , Feminino , Colo do Fêmur/metabolismo , Colo do Fêmur/patologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Fatores de Transcrição MEF2/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
18.
N Engl J Med ; 373(10): 895-907, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26287746

RESUMO

BACKGROUND: Genomewide association studies can be used to identify disease-relevant genomic regions, but interpretation of the data is challenging. The FTO region harbors the strongest genetic association with obesity, yet the mechanistic basis of this association remains elusive. METHODS: We examined epigenomic data, allelic activity, motif conservation, regulator expression, and gene coexpression patterns, with the aim of dissecting the regulatory circuitry and mechanistic basis of the association between the FTO region and obesity. We validated our predictions with the use of directed perturbations in samples from patients and from mice and with endogenous CRISPR-Cas9 genome editing in samples from patients. RESULTS: Our data indicate that the FTO allele associated with obesity represses mitochondrial thermogenesis in adipocyte precursor cells in a tissue-autonomous manner. The rs1421085 T-to-C single-nucleotide variant disrupts a conserved motif for the ARID5B repressor, which leads to derepression of a potent preadipocyte enhancer and a doubling of IRX3 and IRX5 expression during early adipocyte differentiation. This results in a cell-autonomous developmental shift from energy-dissipating beige (brite) adipocytes to energy-storing white adipocytes, with a reduction in mitochondrial thermogenesis by a factor of 5, as well as an increase in lipid storage. Inhibition of Irx3 in adipose tissue in mice reduced body weight and increased energy dissipation without a change in physical activity or appetite. Knockdown of IRX3 or IRX5 in primary adipocytes from participants with the risk allele restored thermogenesis, increasing it by a factor of 7, and overexpression of these genes had the opposite effect in adipocytes from nonrisk-allele carriers. Repair of the ARID5B motif by CRISPR-Cas9 editing of rs1421085 in primary adipocytes from a patient with the risk allele restored IRX3 and IRX5 repression, activated browning expression programs, and restored thermogenesis, increasing it by a factor of 7. CONCLUSIONS: Our results point to a pathway for adipocyte thermogenesis regulation involving ARID5B, rs1421085, IRX3, and IRX5, which, when manipulated, had pronounced pro-obesity and anti-obesity effects. (Funded by the German Research Center for Environmental Health and others.).


Assuntos
Adipócitos/metabolismo , Obesidade/genética , Proteínas/genética , Termogênese/genética , Alelos , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Animais , Sequência de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Epigenômica , Expressão Gênica , Engenharia Genética , Humanos , Camundongos , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Obesidade/metabolismo , Fenótipo , Edição de RNA , Risco , Termogênese/fisiologia
19.
Ann Rheum Dis ; 77(3): 378-385, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29170203

RESUMO

OBJECTIVES: To identify genetic determinants of susceptibility to clinical vertebral fractures, which is an important complication of osteoporosis. METHODS: Here we conduct a genome-wide association study in 1553 postmenopausal women with clinical vertebral fractures and 4340 controls, with a two-stage replication involving 1028 cases and 3762 controls. Potentially causal variants were identified using expression quantitative trait loci (eQTL) data from transiliac bone biopsies and bioinformatic studies. RESULTS: A locus tagged by rs10190845 was identified on chromosome 2q13, which was significantly associated with clinical vertebral fracture (P=1.04×10-9) with a large effect size (OR 1.74, 95% CI 1.06 to 2.6). Bioinformatic analysis of this locus identified several potentially functional SNPs that are associated with expression of the positional candidate genes TTL (tubulin tyrosine ligase) and SLC20A1 (solute carrier family 20 member 1). Three other suggestive loci were identified on chromosomes 1p31, 11q12 and 15q11. All these loci were novel and had not previously been associated with bone mineral density or clinical fractures. CONCLUSION: We have identified a novel genetic variant that is associated with clinical vertebral fractures by mechanisms that are independent of BMD. Further studies are now in progress to validate this association and evaluate the underlying mechanism.


Assuntos
Cromossomos Humanos Par 2/genética , Fraturas por Osteoporose/genética , Fraturas da Coluna Vertebral/genética , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Pós-Menopausa , Locos de Características Quantitativas
20.
Psychosom Med ; 80(3): 242-251, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29280852

RESUMO

OBJECTIVE: Shared genetic background may explain phenotypic associations between depression and Type 2 diabetes (T2D). We aimed to study, on a genome-wide level, if genetic correlation and pleiotropic loci exist between depressive symptoms and T2D or glycemic traits. METHODS: We estimated single-nucleotide polymorphism (SNP)-based heritability and analyzed genetic correlation between depressive symptoms and T2D and glycemic traits with the linkage disequilibrium score regression by combining summary statistics of previously conducted meta-analyses for depressive symptoms by CHARGE consortium (N = 51,258), T2D by DIAGRAM consortium (N = 34,840 patients and 114,981 controls), fasting glucose, fasting insulin, and homeostatic model assessment of ß-cell function and insulin resistance by MAGIC consortium (N = 58,074). Finally, we investigated pleiotropic loci using a bivariate genome-wide association study approach with summary statistics from genome-wide association study meta-analyses and reported loci with genome-wide significant bivariate association p value (p < 5 × 10). Biological annotation and function of significant pleiotropic SNPs were assessed in several databases. RESULTS: The SNP-based heritability ranged from 0.04 to 0.10 in each individual trait. In the linkage disequilibrium score regression analyses, depressive symptoms showed no significant genetic correlation with T2D or glycemic traits (p > 0.37). However, we identified pleiotropic genetic variations for depressive symptoms and T2D (in the IGF2BP2, CDKAL1, CDKN2B-AS, and PLEKHA1 genes), and fasting glucose (in the MADD, CDKN2B-AS, PEX16, and MTNR1B genes). CONCLUSIONS: We found no significant overall genetic correlations between depressive symptoms, T2D, or glycemic traits suggesting major differences in underlying biology of these traits. However, several potential pleiotropic loci were identified between depressive symptoms, T2D, and fasting glucose, suggesting that previously established phenotypic associations may be partly explained by genetic variation in these specific loci.


Assuntos
Depressão/genética , Depressão/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Estudo de Associação Genômica Ampla , Loci Gênicos , Pleiotropia Genética , Humanos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA