Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
BMC Bioinformatics ; 25(1): 201, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802748

RESUMO

BACKGROUND: Cancers are spatially heterogenous, thus their clonal evolution, especially following anti-cancer treatments, depends on where the mutated cells are located within the tumor tissue. For example, cells exposed to different concentrations of drugs, such as cells located near the vessels in contrast to those residing far from the vasculature, can undergo a different evolutionary path. However, classical representations of cell lineage trees do not account for this spatial component of emerging cancer clones. Here, we propose routines to trace spatial and temporal clonal evolution in computer simulations of the tumor evolution models. RESULTS: The LinG3D (Lineage Graphs in 3D) is an open-source collection of routines (in MATLAB, Python, and R) that enables spatio-temporal visualization of clonal evolution in a two-dimensional tumor slice from computer simulations of the tumor evolution models. These routines draw traces of tumor clones in both time and space, and may include a projection of a selected microenvironmental factor, such as the drug or oxygen distribution within the tumor, if such a microenvironmental factor is used in the tumor evolution model. The utility of LinG3D has been demonstrated through examples of simulated tumors with different number of clones and, additionally, in experimental colony growth assay. CONCLUSIONS: This routine package extends the classical lineage trees, that show cellular clone relationships in time, by adding the space component to show the locations of cellular clones within the 2D tumor tissue patch from computer simulations of tumor evolution models.


Assuntos
Evolução Clonal , Neoplasias , Humanos , Neoplasias/genética , Simulação por Computador , Software
2.
Chemistry ; : e202402558, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158512

RESUMO

The high electrochemical reactivity of H2O molecules and zinc metal results in severe side reactions and dendrite formation on zinc anodes. Here we demonstrate that these issues can be addressed by using N-hydroxymethylacetamide (NHA) as additives in 2 M ZnSO4 electrolytes. The addition of NHA molecules, acting as both a hydrogen bond donor and acceptor, enables the formation of cyclic hydrogen bonding with H2O molecules. This interaction disrupts the existing hydrogen bonding networks between H2O molecules, hindering proton transport, and containing H2O molecules within the cyclic hydrogen bonding structure to prevent deprotonation. Additionally, NHA molecules show a preference for adsorption on the (101) crystal surface of zinc metal. This preferential adsorption reduces the surface energy of the (101) plane, facilitating the homogeneous Zn deposition along the (101) direction. Thus, the NHA enables Zn||Zn symmetric cell with a cycle lifespan of 1100 hours at 5 mA cm-2 and Zn||Cu asymmetric cell with a high Coulombic efficiency over 99.5%. Moreover, the NHA-modified Zn||AC zinc ion hybrid capacitor is capable of sustaining 15000 cycles at 2 A g-1. This electrolyte additive engineering presents a promising strategy to enhance the performance and broaden the application potential of zinc metal-based energy storage devices.

3.
Inorg Chem ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39361814

RESUMO

Exploring high-performance and low-platinum-based electrocatalysts to accelerate the oxygen reduction reaction (ORR) at the air cathode of zinc-air batteries remains crucial. Herein, by combining electroless deposition and carbothermal reduction, a nitrogen-doped carbon-supported highly dispersed PtSn alloy nanocatalyst (PtSn/NC) was prepared for a high-efficiency ORR process. Electrochemical measurements show that PtSn/NC exhibits excellent electrocatalytic ORR activity with a half-wave potential of 0.850 V versus reversible hydrogen electrode (RHE), which is higher than that of commercial Pt/C (0.815 V). The PtSn/NC-based (20 µgPt cm-2) rechargeable Zn-air battery exhibited astonishing performance with a maximum power density of up to 150.1 mW cm-2, as well as excellent rate performance and charge/discharge stability. Physical characterization reveals that carbothermal reduction could compel the transformation of Sn oxide into metallic Sn, which then alloys with the deposited Pt atoms to form the PtSn nanoalloy, in which electrons are transferred from Sn atoms to neighboring Pt atoms, thereby improving the ability of Pt-based active sites to catalyze the ORR process in PtSn/NC by optimizing the unoccupied d-band of Pt atoms. This work provides a reliable and innovative route for the rational design of highly dispersed Pt-based alloy ORR electrocatalysts.

4.
Nano Lett ; 23(24): 11763-11770, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38100381

RESUMO

Understanding the phonon characteristics of two-dimensional (2D) molybdenum ditelluride (MoTe2) under strain is critical to manipulating its multiphysical properties. Although there have been numerous computational efforts to elucidate the strain-coupled phonon properties of monolayer MoTe2, empirical validation is still lacking. In this work, monolayer 1H-MoTe2 under uniaxial strain is studied via in situ micro-Raman spectroscopy. Directionally dependent monotonic softening of the doubly degenerate in-plane E2g1 phonon mode is observed with increasing uniaxial strain, where the E2g1 peak red-shifts -1.66 ± 0.04 cm-1/% along the armchair direction and -0.80 ± 0.07 cm-1/% along the zigzag direction. The corresponding Grüneisen parameters are calculated to be 1.09 and 0.52 along the armchair and zigzag directions, respectively. This work provides the first empirical quantification and validation of the orientation-dependent strain-coupled phonon response in monolayer 1H-MoTe2 and serves as a benchmark for other prototypical 2D transition-metal tellurides.

5.
Small ; 19(38): e2301433, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37263991

RESUMO

Lithium metal batteries are intensively studied due to the potential to bring up breakthroughs in high energy density devices. However, the inevitable growth of dendrites will cause the rapid failure of battery especially under high current density. Herein, the utilization of tetrachloroethylene (C2 Cl4 ) is reported as the electrolyte additive to induce the formation of the LiCl-rich solid electrolyte interphase (SEI). Because of the lower Li ion diffusion barrier of LiCl, such SEI layer can supply sufficient pathway for rapid Li ion transport, alleviate the concentration polarization at the interface and inhibit the growth of Li dendrites. Meanwhile, the C2 Cl4 can be continuously replenished during the cycle to ensure the stability of the SEI layer. With the aid of C2 Cl4 -based electrolyte, the Li metal electrodes can maintain stable for >300 h under high current density of 50 mA cm-2 with areal capacity of 5 mAh cm-2 , broadening the compatibility of lithium metal anode toward practical application scenarios.

6.
Angew Chem Int Ed Engl ; 62(32): e202302746, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37300514

RESUMO

Lewis-base sites have been widely applied to regulate the properties of Lewis-acid sites in electrocatalysts for achieving a drastic technological leap of lithium-oxygen batteries (LOBs). Whereas, the direct role and underlying mechanism of Lewis-base in the chemistry for LOBs are still rarely elucidated. Herein, we comprehensively shed light on the pivotal mechanism of Lewis-base sites in promoting the electrocatalytic reaction processes of LOBs by constructing the metal-organic framework containing Lewis-base sites (named as UIO-66-NH2 ). The density functional theory (DFT) calculations demonstrate the Lewis-base sites can act as electron donors that boost the activation of O2 /Li2 O2 during the discharged-charged process, resulting in the accelerated reaction kinetics of LOBs. More importantly, the in situ Fourier transform infrared spectra and DFT calculations firstly demonstrate the Lewis-base sites can convert Li2 O2 growth mechanism from surface-adsorption growth to solvation-mediated growth due to the capture of Li+ by Lewis-base sites upon discharged process, which weakens the adsorption energy of UIO-66-NH2 towards LiO2 . As a proof of concept, LOB based on UIO-66-NH2 can achieve a high discharge specific capacity (12 661 mAh g-1 ), low discharged-charged overpotential (0.87 V) and long cycling life (169 cycles). This work reveals the direct role of Lewis-base sites, which can guide the design of electrocatalysts featuring Lewis-acid/base dual centers for LOBs.

7.
Small ; 18(14): e2106657, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35023632

RESUMO

Mapping technique has been the powerful tool for the design of next-generation energy storage devices. Unlike the traditional ion-insertion based lithium batteries, the Li-S battery is based on the complex conversion reactions, which require more cooperation from mapping techniques to elucidate the underlying mechanism. Therefore, in this review, the representative works of mapping techniques for Li-S batteries are summarized, and categorized into the studies of lithium metal anode and sulfur cathode, with sub-sections based on shared characterization mechanisms. Due to specific features of mapping techniques, various aspects such as compositional distribution, in-plain/cross section characterization, coin cell/pouch cell configuration, and structural/mechanical analysis are emphasized in each study, aiming for the guidance for developing strategies to improve the battery performances. Benefited from the achieved progresses, suggestions for future studies based on mapping techniques are proposed to accelerate the development and commercialization of the Li-S battery.

8.
Small ; 18(51): e2205470, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36328710

RESUMO

Lithium-sulfur (Li-S) batteries have attracted great interest due to their low cost, high theoretical energy density, and environmental friendliness. However, the sluggish conversion of lithium polysulfides (LiPS) to S and Li2 S during the charge/discharge process leads to unsatisfactory rate performance of lower to 0.1 C (1 C = 1675 mA g-1 ) especially for Li-S pouch batteries, thus hindering their practical applications in high power batteries. Here, well-defined and monodispersed Ni single-atom catalysts (SACs) embedded in highly porous nitrogen-doped graphitic carbons (NiSA-N-PGC) are designed and synthesized to form Ni-N4 catalytic sites at the atomic level. When serving as a bifunctional electrocatalyst, the Ni-N4 catalytic sites cannot only promote the interfacial conversion redox of LiPS by accelerating the transformation kinetics, but also suppress the undesirable shuttle effect by immobilizing LiPS. These findings are verified by both experimental results and DFT theoretical calculations. Furthermore, Li ions show low diffusion barrier on the surface of Ni-N4 sites, resulting in enhanced areal capacity of batteries. As a result, the Li-S battery delivers stable cycling life of more than 600 cycles with 0.069% capacity decay per cycle at a rate of 0.5 C. More importantly, the Li-S pouch cells with NiSA-N-PGC show an initial capacity of 1299 mAh g-1 at a rate of 0.2 C even with high sulfur loading of 6 mg cm-2 . This work opens up an avenue for developing single-atom catalysts to accelerate the kinetic conversion of LiPS for highly stable Li-S batteries.

9.
Small ; 17(44): e2104367, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34561953

RESUMO

Lithium-sulfur battery promises great potential to promote the reform of energy storage field. Modified functional interlayer on separator has been recognized as efficient method to promote battery performances, mainly focusing on the entrapment and catalytic effect toward lithium polysulfide, while the mass transfer property across the interlayers has not been carefully considered. Herein, a dense layer composed of ion-inserted metal-organic frameworks is used to facilitate mass transfer across the layer and ensure high polysulfides entrapment efficiency. In situ Raman study reveals that the dense functional layer blocks the transfer of Li ions, while the ion-inserted layer can accelerate the ion-transfer kinetics and avoid the ion depletion caused polarization. As a result, a specific capacity of 742 mAh g-1 is obtained at 2 C, with the decay rate of 0.089% per cycle at 1 C over 600 cycles, demonstrating great potential for the application in advanced Li-S batteries.

10.
Analyst ; 146(16): 5008-5032, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34296232

RESUMO

Surface-enhanced Raman scattering (SERS) has become one of the most sensitive analytical techniques for identifying the chemical components, molecular structures, molecular conformations, and the interactions between molecules. However, great challenges still need to be addressed until it can be widely accepted by the absolute quantification of analytes. Recently, many efforts have been devoted to addressing these issues via various electromagnetic (EM), chemical (CM), and EM-CM hybrid coupling enhancement strategies. In comparison with uncoupled SERS devices, they offer key advantages in terms of sensitivity, reproducibility, uniformity, stability, controllability and reliability. This review provides an in-depth analysis of coupled SERS devices, including coupling enhancement mechanisms, materials and approaches. Finally, we also discuss the remaining bottlenecks and possible strategies for the development of coupling-enhanced SERS devices in the future.


Assuntos
Análise Espectral Raman , Reprodutibilidade dos Testes
11.
Nanotechnology ; 32(4): 045502, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33049728

RESUMO

The discovery of the field effect in graphene initiated the development of graphene field effect transistor (FET) sensors, wherein high mobility surface conduction is readily modulated by surface adsorption. For all graphene transistor sensors, low-frequency 1/f noise determines sensor resolution, and the absolute measure of 1/f noise is thus a crucial performance metric for sensor applications. Here we report a simple method for reducing 1/f noise by scaling the active area of graphene FET sensors. We measured 1/f noise in graphene FETs with size 5 µm × 5 µm to 5.12 mm × 5.12 mm, observing more than five orders of magnitude reduction in 1/f noise. We report the lowest normalized graphene 1/f noise parameter observed to date, 5 × 10-13, and we demonstrate a sulfate ion sensor with a record resolution of 1.2 × 10-3 log molar concentration units. Our work highlights the importance of area scaling in graphene FET sensor design, wherein increased channel area improves sensor resolution.

12.
Small ; 16(24): e2001812, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32431080

RESUMO

Albeit the effectiveness of surface oxygen vacancy in improving oxygen redox reactions in Li-O2 battery, the underpinning reason behind this improvement remains ambiguous. Herein, the concentration of oxygen vacancy in spinel NiCo2 O4 is first regulated via magnetron sputtering and its relationship with catalytic activity is comprehensively studied in Li-O2 battery based on experiment and density functional theory (DFT) calculation. The positive effect posed by oxygen vacancy originates from the up shifted antibond orbital relative to Fermi level (Ef ), which provides extra electronic state around Ef , eventually enhancing oxygen adsorption and charge transfer during oxygen redox reactions. However, with excessive oxygen vacancy, the negative effect emerges because the metal ions are mostly reduced to low valence based on the electrical neutral principle, which not only destabilizes the crystal structure but also weakens the ability to capture electrons from the antibond orbit of Li2 O2 , leading to poor catalytic activity for oxygen evolution reaction (OER).

13.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496472

RESUMO

Cancer clonal evolution, especially following anti-cancer treatments, depends on the locations of the mutated cells within the tumor tissue. Cells near the vessels, exposed to higher concentrations of drugs, will undergo a different evolutionary path than cells residing far from the vasculature in the areas of lower drug levels. However, classical representations of cell lineage trees do not account for this spatial component of emerging cancer clones. Here, we propose the LinG3D (Lineage Graphs in 3D) algorithms to trace clonal evolution in space and time. These are an open-source collection of routines (in MATLAB, Python, and R) that enables spatio-temporal visualization of clonal evolution in a two-dimensional tumor slice from computer simulations of the tumor evolution models. These routines draw traces of tumor clones in both time and space, with an option to include a projection of a selected microenvironmental factor, such as the drug or oxygen distribution within the tumor. The utility of LinG3D has been demonstrated through examples of simulated tumors with different number of clones and, additionally, in experimental colony growth assay. This routine package extends the classical lineage trees, that show cellular clone relationships in time, by adding the space component to show the locations of cellular clones within the 2D tumor tissue patch from computer simulations of tumor evolution models.

14.
Chem Sci ; 15(30): 12108-12117, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39092122

RESUMO

In situ polymerized 1,3-dioxolane (PDOL) is widely utilized to construct solid polymer electrolytes because of its high room-temperature ionic conductivity and good compatibility with lithium metal. However, the current polymerization additives used in PDOL do not effectively contribute to the formation of a robust solid electrolyte interphase (SEI), leading to decreased cycle life. Herein, a film-forming Lewis acid, tris(hexafluoroisopropyl) borate (THB), is demonstrated not only to be a catalyst for the ring-opening polymerization of DOL, but also an additive for the formation of a stable fluorine- and boron-rich SEI to improve the interfacial stability and suppress the Li dendrite growth. Moreover, molecular dynamics simulations and experimental results demonstrate that the introduction of THB can promote the dissociation of lithium salt and release more Li+ while the boron site can effectively restrict the free movement of TFSI- anion, thus increasing Li+ transference numbers (0.76) and ensuring the long-term cycling stability of cells. By using THB-PDOL, a stable cycling of Li‖Li symmetric cell for 600 h at a capacity of 0.5 mA h cm-2 can be achieved. Furthermore, employing THB-PDOL in Li‖LiFePO4 full cell enables a capacity retention of 98.64% after 300 cycles at 1C and a capacity retention of 95.39% after 200 cycles at a high temperature (60 °C). At the same time, this electrolyte is also suitable for the Li‖NCM523 full cell, which also achieves excellent stability of more than 180 cycles. This film-forming Lewis acid additive provides ideas for designing low-cost, high-performance PDOL-based lithium metal batteries.

15.
Chem Commun (Camb) ; 60(73): 9962-9965, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39171778

RESUMO

Functional composite layers composed of an amino-functionalized zirconium 1,4-dicarboxybenzene metal-organic framework were constructed on zinc anodes to mitigate the interface disturbances in aqueous batteries. These layers enable robust Zn2+ adsorption and homogenized Zn2+ transport and deposition kinetics, facilitating achieving high stability in a symmetric cell (3500 h) and a full cell (35 000 cycles, 96.7%).

16.
Nanoscale ; 16(16): 8096-8107, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38566568

RESUMO

Metal single-atom catalysts have attracted widespread attention in the field of lithium-oxygen batteries due to their unique active sites, high catalytic selectivity, and near total atomic utilization efficiency. Isolated metal atoms not only serve as the active sites themselves, but also function as modulators, reversely regulating the surface electronic structure of the support to enhance its inherent electrocatalytic activities. Despite the potential of isolated metal atom-driven active sites, understanding the structure-activity relationship remains a challenge. In this study, we present a ruthenium single-atom doping-driven cost-effective and durable tricobalt tetroxide electrocatalyst with excellent oxygen electrode electrocatalytic activity. The lithium-oxygen battery with this catalyst as the oxygen electrode demonstrates high performance, achieving a capacity of up to 25 000 mA h g-1 and maintaining good stability over 400 cycles at a current density of 100 mA g-1. This improvement is attributed to the exquisite control of the morphology and structure of the discharge product, lithium peroxide. The aresults of physical characterization and theoretical calculations reveal that isolated ruthenium atoms bond with the tetrahedral cobalt site, resulting in spin polarization enhancement and rearrangement of d orbital energy levels in cobalt. This rearrangement reduces the dz2 orbital occupancy and promotes their transfer to the octahedral cobalt site, thereby enhancing its adsorption capacity for the oxygen-containing intermediates, and ultimately increasing the electrocatalytic activity of the oxygen evolution reaction. This work presents an innovative strategy to regulate the catalytic activity of metal oxides by introducing another metal single atom.

17.
J Colloid Interface Sci ; 657: 384-392, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38056043

RESUMO

Sculpting crystal configurations can vastly affect the charge and orbital states of electrocatalysts, fundamentally determining the catalytic activity of lithium-oxygen (Li-O2) batteries. However, the crucial role of crystal configurations in determining the electronic states has usually been neglected and needs to be further examined. Herein, we introduce orthorhombic and trigonal system into 0.5La0.6Sr0.4MnO3-0.5LaMn0.6Co0.4O3 (LSMCO) by selectively incorporating Sr and Co cations into the LaMnO3 framework during the sol-gel process, which is used to explore the relationship among crystal structure, electronic states and catalytic performance. Based on both experimental and theoretical calculations, the dual-crystal configurations induce strong lattice distortion, which promotes MnO6 octahedra vibration and shortened MnO bonds. Furthermore, the suppressed Jahn-Teller distortion weakens the orbital arrangement and accelerates the charge delocalization, leading to the conversion of Mn3+ to Mn4+ and optimized electronic states. Ultimately, this resulted in optimized Mn 3d and O 2p orbital hybridization and activated lattice oxygen function, leading to a significant improvement in electrocatalytic activity. The LSMCO catalyzed Li-O2 battery achieves enhanced discharge capacity of 14498.7 mAh/g and cycling stability of 258 cycles. This work highlights the significance of inner structure and presents a feasible strategy for engineering crystal configurations to boost electrocatalysis of Li-O2 batteries.

18.
Adv Mater ; 36(21): e2312880, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38330999

RESUMO

While layered metal oxides remain the dominant cathode materials for the state-of-the-art lithium-ion batteries, conversion-type cathodes such as sulfur present unique opportunities in developing cheaper, safer, and more energy-dense next-generation battery technologies. There has been remarkable progress in advancing the laboratory scale lithium-sulfur (Li-S) coin cells to a high level of performance. However, the relevant strategies cannot be readily translated to practical cell formats such as pouch cells and even battery pack. Here these key technical challenges are addressed by molecular engineering of the Li metal for hydrophobicization, fluorination and thus favorable anode chemistry. The introduced tris(2,4-di-tert-butylphenyl) phosphite (TBP) and tetrabutylammonium fluoride (TBA+F-) as well as cellulose membrane by rolling enables the formation of a functional thin layer that eliminates the vulnerability of Li metal towards the already demanding environment required (1.55% relative humidity) for cell production and gives rise to LiF-rich solid electrolyte interphase (SEI) to suppress dendrite growth. As a result, Li-S pouch cells assembled at a pilot production line survive 400 full charge/discharge cycles with an average Coulombic efficiency of 99.55% and impressive rate performance of 1.5 C. A cell-level energy density of 417 Wh kg-1 and power density of 2766 W kg-1 are also delivered via multilayer Li-S pouch cell. The Li-S battery pack can even power an unmanned aerial vehicle of 3 kg for a fairly long flight time. This work represents a big step forward acceleration in Li-S battery marketization for future energy storage featuring improved safety, sustainability, higher energy density as well as reduced cost.

19.
Nanoscale ; 15(37): 15318-15327, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37682066

RESUMO

Minimizing the amount of metallic lithium (Li) to zero excess to achieve an anode-free configuration can help achieve safer, higher energy density, and more economical Li metal batteries. Nevertheless, removal of excess Li creates challenges for long-term cycling performance in Li metal batteries due to the lithiophobic copper foils as anodic current collectors. Here, we improve the long-term cycling performance of anode-free Li metal batteries by modifying the anode-free configuration. Specifically, a lithiophilic Au nanoparticle-anchored reduced graphene oxide (Au/rGO) film is used as an anodic modifier to reduce the Li nucleation overpotential and inhibit dendrite growth by forming a lithiophilic LixAu alloy and solid solution, which is convincingly evidenced by density functional theory calculations and experimentally. Meanwhile, the flexible rGO film can also act as a buffer layer to endure the volume expansion during repeated Li plating/stripping processes. In addition, the Au/rGO film promotes a homogeneous distribution of the electric field over the entire anodic surface, thus ensuring a uniform deposition of Li during the electrodeposition process, which is convincingly evidenced by finite element simulations. As expected, the Li||Au/rGO-Li half-cell shows a highly stable long-term cycling performance for at least 500 cycles at 0.5 mA cm-2 and 0.5 mA h cm-2. A Li2S-based anode-free full cell allows achieving a stable operation life of up to 200 cycles with a capacity retention of 63.3%. This work provides a simple and scalable fabrication method to achieve anode-free Li2S-based cells with high anodic interface stability and a long lifetime.

20.
J Colloid Interface Sci ; 635: 138-147, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36584614

RESUMO

The electronic structure of cathode catalysts dominates the electrochemistry reaction kinetics in lithium-oxygen batteries. However, conventional catalysts perform inferior intrinsic activity due to the low d-band level of the active sites makes it difficult to bond with the reaction intermediates, which results in poor electrochemical performance of lithium-oxygen batteries. Herein, NiFe2O4/MoS2 heterostructures are elaborately constructed to reach an electronic state balance for the active sites, which realizes the upper shift of the d-band level and enhanced adsorption of intermediates. Density functional theory calculation suggests that the d-band center of Fe active sites on the heterostructure moves toward the Fermi level, demonstrating the heterointerface engineering endows Fe active sites with high d-band level by the transfer and balance of electron. As a proof of concept, lithium-oxygen battery catalyzed by NiFe2O4/MoS2 exhibits a large specific capacity of 21526 mA h g-1 and an extended cycle performance for 268 cycles. Moreover, NiFe2O4/MoS2 with strong adsorption to intermediates promotes the uniform growth of discharge products, which is favor of the reversible decomposition during cycling. This work presents the energy band regulation of the active sites in heterostructure catalysts has great feasibility for enhancing catalytic activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA