Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37628808

RESUMO

To investigate the stability and electrical and physical properties of undoped CuO and CuO doped with rare earth elements, electronic structures and elastic constants were calculated using first-principles density functional theory. Additionally, experimental verification was carried out on AgCuO and AgCuO-X (La, Ce, Y) electrical contacts, which were prepared using sol-gel and powder metallurgy methods. The contacts were tested under an 18 V/15 A DC resistive load using the JF04D contact material testing system. Arc parameters were analyzed, and three-dimensional surface profilometry and scanning electron microscopy were used to study the altered erosion morphology of the electrically contacted materials; moreover, the potential mechanisms behind their arc erosion behavior were investigated in depth. The results demonstrate that the doping of rare earth elements can improve the electrical conductivity and physical properties of the contacts, optimize the arc parameters, and enhance their resistance to arc erosion. Notably, AgCuO-Ce exhibited the highest electrical conductivity and the least amount of material transfer; moreover, it had excellent arc time and energy parameters, resulting in the best resistance to arc erosion. This study provides a theoretical basis for the screening of doping elements to enhance the performance of AgCuO contact materials and offers new ideas and scientific references for this field.


Assuntos
Eletricidade , Metais Terras Raras , Condutividade Elétrica , Cobre , Eletrônica
2.
Materials (Basel) ; 15(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36143735

RESUMO

Ag/Ni composite contact materials are widely used in low-voltage switches, appliances, instruments, and high-precision contacts due to their good electrical conductivity and processing properties. The addition of small amounts of additives can effectively improve the overall performance of Ag/Ni contact materials. Graphene has good applications in semiconductors, thermal materials, and metal matrix materials due to its good electrical and thermal conductivity and mechanical properties. In this paper, Ag-graphene composites with different added graphene contents were prepared by in situ synthesis of graphene oxide (GO) and AgNO3 by reduction at room temperature using ascorbic acid as a reducing agent. The Ag-graphene composites and nickel powder were ball-milled and mixed in a mass ratio of 85:15. The Ag-graphene/Ni was tested as an electrical contact material after the pressing, initial firing, repressing, and refiring processes. Its fusion welding force and arc energy were measured. The results show a 12% improvement in electrical conductivity with a graphene doping content of approximately 0.3 wt% compared to undoped contacts, resulting in 33.8 IACS%. The average contact fusion welding force was 49.49 cN, with an average reduction in the fusion welding force of approximately 8.04%. The average arc ignition energy was approximately 176.77 mJ, with an average decrease of 13.06%. The trace addition of graphene can improve the overall performance of Ag/Ni contacts and can promote the application of graphene in electrical contact materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA