RESUMO
Cytokines employ downstream Janus kinases (JAKs) to promote chronic inflammatory diseases. JAK1-dependent type 2 cytokines drive allergic inflammation, and patients with JAK1 gain-of-function (GoF) variants develop atopic dermatitis (AD) and asthma. To explore tissue-specific functions, we inserted a human JAK1 GoF variant (JAK1GoF) into mice and observed the development of spontaneous AD-like skin disease but unexpected resistance to lung inflammation when JAK1GoF expression was restricted to the stroma. We identified a previously unrecognized role for JAK1 in vagal sensory neurons in suppressing airway inflammation. Additionally, expression of Calcb/CGRPß was dependent on JAK1 in the vagus nerve, and CGRPß suppressed group 2 innate lymphoid cell function and allergic airway inflammation. Our findings reveal evolutionarily conserved but distinct functions of JAK1 in sensory neurons across tissues. This biology raises the possibility that therapeutic JAK inhibitors may be further optimized for tissue-specific efficacy to enhance precision medicine in the future.
Assuntos
Dermatite Atópica , Imunidade Inata , Pulmão , Células Receptoras Sensoriais , Animais , Humanos , Camundongos , Citocinas , Dermatite Atópica/imunologia , Inflamação , Pulmão/imunologia , Linfócitos , Células Receptoras Sensoriais/enzimologiaRESUMO
Nociceptive pain is a hallmark of many chronic inflammatory conditions including inflammatory bowel diseases (IBDs); however, whether pain-sensing neurons influence intestinal inflammation remains poorly defined. Employing chemogenetic silencing, adenoviral-mediated colon-specific silencing, and pharmacological ablation of TRPV1+ nociceptors, we observed more severe inflammation and defective tissue-protective reparative processes in a murine model of intestinal damage and inflammation. Disrupted nociception led to significant alterations in the intestinal microbiota and a transmissible dysbiosis, while mono-colonization of germ-free mice with Gram+Clostridium spp. promoted intestinal tissue protection through a nociceptor-dependent pathway. Mechanistically, disruption of nociception resulted in decreased levels of substance P, and therapeutic delivery of substance P promoted tissue-protective effects exerted by TRPV1+ nociceptors in a microbiota-dependent manner. Finally, dysregulated nociceptor gene expression was observed in intestinal biopsies from IBD patients. Collectively, these findings indicate an evolutionarily conserved functional link between nociception, the intestinal microbiota, and the restoration of intestinal homeostasis.
Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Nociceptores/fisiologia , Substância P , Disbiose , InflamaçãoRESUMO
Itch is an evolutionarily conserved sensation that facilitates expulsion of pathogens and noxious stimuli from the skin. However, in organ failure, cancer, and chronic inflammatory disorders such as atopic dermatitis (AD), itch becomes chronic, intractable, and debilitating. In addition to chronic itch, patients often experience intense acute itch exacerbations. Recent discoveries have unearthed the neuroimmune circuitry of itch, leading to the development of anti-itch treatments. However, mechanisms underlying acute itch exacerbations remain overlooked. Herein, we identify that a large proportion of patients with AD harbor allergen-specific immunoglobulin E (IgE) and exhibit a propensity for acute itch flares. In mice, while allergen-provoked acute itch is mediated by the mast cell-histamine axis in steady state, AD-associated inflammation renders this pathway dispensable. Instead, a previously unrecognized basophil-leukotriene (LT) axis emerges as critical for acute itch flares. By probing fundamental itch mechanisms, our study highlights a basophil-neuronal circuit that may underlie a variety of neuroimmune processes.
Assuntos
Basófilos/patologia , Neurônios/patologia , Prurido/patologia , Doença Aguda , Alérgenos/imunologia , Animais , Doença Crônica , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Modelos Animais de Doenças , Histamina/metabolismo , Humanos , Imunoglobulina E/imunologia , Inflamação/patologia , Leucotrienos/metabolismo , Mastócitos/imunologia , Camundongos Endogâmicos C57BL , Fenótipo , Prurido/imunologia , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismoRESUMO
Mammals have evolved neurophysiologic reflexes, such as coughing and scratching, to expel invading pathogens and noxious environmental stimuli. It is well established that these responses are also associated with chronic inflammatory diseases, including asthma and atopic dermatitis. However, the mechanisms by which inflammatory pathways promote sensations such as itch remain poorly understood. Here, we show that type 2 cytokines directly activate sensory neurons in both mice and humans. Further, we demonstrate that chronic itch is dependent on neuronal IL-4Rα and JAK1 signaling. We also observe that patients with recalcitrant chronic itch that failed other immunosuppressive therapies markedly improve when treated with JAK inhibitors. Thus, signaling mechanisms previously ascribed to the immune system may represent novel therapeutic targets within the nervous system. Collectively, this study reveals an evolutionarily conserved paradigm in which the sensory nervous system employs classical immune signaling pathways to influence mammalian behavior.
Assuntos
Prurido/imunologia , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Dermatopatias/imunologia , Animais , Gânglios Espinais , Humanos , Interleucina-13/imunologia , Interleucina-4/imunologia , Janus Quinase 1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Prurido/metabolismo , Dermatopatias/patologiaRESUMO
Cardiac macrophages represent a heterogeneous cell population with distinct origins, dynamics, and functions. Recent studies have revealed that C-C Chemokine Receptor 2 positive (CCR2+) macrophages derived from infiltrating monocytes regulate myocardial inflammation and heart failure pathogenesis. Comparatively little is known about the functions of tissue resident (CCR2-) macrophages. Herein, we identified an essential role for CCR2- macrophages in the chronically failing heart. Depletion of CCR2- macrophages in mice with dilated cardiomyopathy accelerated mortality and impaired ventricular remodeling and coronary angiogenesis, adaptive changes necessary to maintain cardiac output in the setting of reduced cardiac contractility. Mechanistically, CCR2- macrophages interacted with neighboring cardiomyocytes via focal adhesion complexes and were activated in response to mechanical stretch through a transient receptor potential vanilloid 4 (TRPV4)-dependent pathway that controlled growth factor expression. These findings establish a role for tissue-resident macrophages in adaptive cardiac remodeling and implicate mechanical sensing in cardiac macrophage activation.
Assuntos
Cardiomiopatia Dilatada/metabolismo , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Remodelação Ventricular/fisiologia , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Miocárdio/metabolismo , Troponina T/genéticaRESUMO
Intestinal macrophages are critical for gastrointestinal (GI) homeostasis, but our understanding of their role in regulating intestinal motility is incomplete. Here, we report that CX3C chemokine receptor 1-expressing muscularis macrophages (MMs) were required to maintain normal GI motility. MMs expressed the transient receptor potential vanilloid 4 (TRPV4) channel, which senses thermal, mechanical, and chemical cues. Selective pharmacologic inhibition of TRPV4 or conditional deletion of TRPV4 from macrophages decreased intestinal motility and was sufficient to reverse the GI hypermotility that is associated with chemotherapy treatment. Mechanistically, stimulation of MMs via TRPV4 promoted the release of prostaglandin E2 and elicited colon contraction in a paracrine manner via prostaglandin E receptor signaling in intestinal smooth muscle cells without input from the enteric nervous system. Collectively, our data identify TRPV4-expressing MMs as an essential component required for maintaining normal GI motility and provide potential drug targets for GI motility disorders.
Assuntos
Colo/fisiologia , Motilidade Gastrointestinal , Macrófagos/metabolismo , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais , Canais de Cátion TRPV/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Colo/fisiopatologia , Ciclo-Oxigenase 1/deficiência , Ciclo-Oxigenase 1/metabolismo , Dinoprostona/análise , Dinoprostona/metabolismo , Feminino , Mucosa Gástrica/citologia , Expressão Gênica , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Contração Muscular , Receptores de Prostaglandina E/antagonistas & inibidores , Receptores de Prostaglandina E/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genéticaRESUMO
Goblet cells (GCs) are specialized cells of the intestinal epithelium contributing critically to mucosal homeostasis. One of the functions of GCs is to produce and secrete MUC2, the mucin that forms the scaffold of the intestinal mucus layer coating the epithelium and separates the luminal pathogens and commensal microbiota from the host tissues. Although a variety of ion channels and transporters are thought to impact on MUC2 secretion, the specific cellular mechanisms that regulate GC function remain incompletely understood. Previously, we demonstrated that leucine-rich repeat-containing protein 26 (LRRC26), a known regulatory subunit of the Ca2+-and voltage-activated K+ channel (BK channel), localizes specifically to secretory cells within the intestinal tract. Here, utilizing a mouse model in which MUC2 is fluorescently tagged, thereby allowing visualization of single GCs in intact colonic crypts, we show that murine colonic GCs have functional LRRC26-associated BK channels. In the absence of LRRC26, BK channels are present in GCs, but are not activated at physiological conditions. In contrast, all tested MUC2- cells completely lacked BK channels. Moreover, LRRC26-associated BK channels underlie the BK channel contribution to the resting transepithelial current across mouse distal colonic mucosa. Genetic ablation of either LRRC26 or BK pore-forming α-subunit in mice results in a dramatically enhanced susceptibility to colitis induced by dextran sodium sulfate. These results demonstrate that normal potassium flux through LRRC26-associated BK channels in GCs has protective effects against colitis in mice.
Assuntos
Colite/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Mucina-2/genética , Animais , Colite/patologia , Colite/prevenção & controle , Colite/terapia , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Potenciais da Membrana/genética , Camundongos , Técnicas de Patch-ClampRESUMO
BACKGROUND: Chronic pruritus, or itch, is common and debilitating, but the neuroimmune mechanisms that drive chronic itch are only starting to be elucidated. Recent studies demonstrate that the IL-33 receptor (IL-33R) is expressed by sensory neurons. However, whether sensory neuron-restricted activity of IL-33 is necessary for chronic itch remains poorly understood. OBJECTIVES: We sought to determine if IL-33 signaling in sensory neurons is critical for the development of chronic itch in 2 divergent pruritic disease models. METHODS: Plasma levels of IL-33 were assessed in patients with atopic dermatitis (AD) and chronic pruritus of unknown origin (CPUO). Mice were generated to conditionally delete IL-33R from sensory neurons. The contribution of neuronal IL-33R signaling to chronic itch development was tested in mouse models that recapitulate key pathologic features of AD and CPUO, respectively. RESULTS: IL-33 was elevated in both AD and CPUO as well as their respective mouse models. While neuron-restricted IL-33R signaling was dispensable for itch in AD-like disease, it was required for the development of dry skin itch in a mouse model that mirrors key aspects of CPUO pathology. CONCLUSIONS: These data highlight how IL-33 may be a predominant mediator of itch in certain contexts, depending on the tissue microenvironment. Further, this study provides insight into future therapeutic strategies targeting the IL-33 pathway for chronic itch.
Assuntos
Dermatite Atópica , Interleucina-33 , Animais , Modelos Animais de Doenças , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33/metabolismo , Camundongos , Prurido , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , PeleRESUMO
Microglia are found pathologically at all stages of multiple sclerosis (MS) lesion development and are hypothesized to contribute to both inflammatory injury and neuroprotection in the MS brain. Transient receptor potential vanilloid 4 (TRPV4) channels are widely expressed, play an important role as environmental sensors, and are involved in calcium homeostasis for a variety of cells. TRPV4 modulates myeloid cell phagocytosis in the periphery and microglial motility in the central nervous system. We hypothesized that TRPV4 deletion would alter microglia phagocytosis in vitro and lessen disease activity and demyelination in experimental autoimmune encephalitis (EAE) and cuprizone-induced demyelination. We found that genetic deletion of TRPV4 led to increased microglial phagocytosis in vitro but did not alter the degree of demyelination or remyelination in the cuprizone mouse model of MS. We also found no difference in disease in EAE following global or microglia-specific deletion of Trpv4. Additionally, lesioned and normal appearing white matter from MS brains exhibited similar TRPV4 expression compared to healthy brain tissue. Taken together, these findings indicate that TRPV4 modulates microglial activity but does not impact disease activity in mouse models of MS, suggesting a muted and/or redundant role in MS pathogenesis.
Assuntos
Doenças Desmielinizantes , Microglia , Canais de Cátion TRPV , Animais , Camundongos , Cuprizona/efeitos adversos , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Esclerose Múltipla/patologia , Bainha de Mielina/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismoRESUMO
Crystal structures activate innate immune cells, especially macrophages and initiate inflammatory responses. We aimed to understand the role of the mechanosensitive TRPV4 channel in crystal-induced inflammation. Real-time RT-PCR, RNAscope in situ hybridisation, and Trpv4eGFP mice were used to examine TRPV4 expression and whole-cell patch-clamp recording and live-cell Ca2+ imaging were used to study TRPV4 function in mouse synovial macrophages and human peripheral blood mononuclear cells (PBMCs). Both genetic deletion and pharmacological inhibition approaches were used to investigate the role of TRPV4 in NLRP3 inflammasome activation induced by diverse crystals in vitro and in mouse models of crystal-induced pain and inflammation in vivo. TRPV4 was functionally expressed by synovial macrophages and human PBMCs and TRPV4 expression was upregulated by stimulation with monosodium urate (MSU) crystals and in human PBMCs from patients with acute gout flares. MSU crystal-induced gouty arthritis were significantly reduced by either genetic ablation or pharmacological inhibition of TRPV4 function. Mechanistically, TRPV4 mediated the activation of NLRP3 inflammasome by diverse crystalline materials but not non-crystalline NLRP3 inflammasome activators, driving the production of inflammatory cytokine interleukin-1ß which elicited TRPV4-dependent inflammatory responses in vivo. Moreover, chemical ablation of the TRPV1-expressing nociceptors significantly attenuated the MSU crystal-induced gouty arthritis. In conclusion, TRPV4 is a common mediator of inflammatory responses induced by diverse crystals through NLRP3 inflammasome activation in macrophages. TRPV4-expressing resident macrophages are critically involved in MSU crystal-induced gouty arthritis. A neuroimmune interaction between the TRPV1-expressing nociceptors and the TRPV4-expressing synovial macrophages contributes to the generation of acute gout flares.
Assuntos
Artralgia/metabolismo , Artrite/metabolismo , Artropatias por Cristais/metabolismo , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Nociceptores/metabolismo , Canais de Cátion TRPV/genética , Adulto , Animais , Artralgia/imunologia , Artrite/imunologia , Artrite Gotosa/imunologia , Artrite Gotosa/metabolismo , Artropatias por Cristais/imunologia , Gota/imunologia , Gota/metabolismo , Humanos , Inflamassomos/imunologia , Inflamação , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Imagem Óptica , Técnicas de Patch-Clamp , Membrana Sinovial/citologia , Células THP-1 , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Ácido ÚricoRESUMO
Continuous activation of angiotensin II (Ang II) induces renal vascular endothelial dysfunction, inflammation, and oxidative stress, all of which may contribute to renal damage. It is well established that microRNAs (miRNAs) play crucial regulatory roles in the pathogenesis of hypertensive renal damage. However, the detailed mechanisms and regulatory roles of miRNAs as therapeutic targets underlying Ang II-induced renal artery endothelial cell dysfunction in hypertensive renal damage have yet to be fully elucidated. The present study aimed to explore the expression status and putative role of miRNA-200c-3p in mediating the progression of hypertensive renal damage. We carried out real-time quantitative PCR (RT-qPCR) to detect the expression of miRNA-200c-3p in rat renal artery endothelial cells (RRAECs) induced by Ang II. MTT and transwell assays were utilized to evaluate the effects of miRNA-200c-3p on cell proliferation and migration, respectively. The present results revealed that the expression of miRNA-200c-3p was significantly upregulated in RRAECs exposed to Ang II compared with that of normal cells. miRNA-200c-3p overexpression markedly inhibited cell proliferation and migration of Ang II-induced RRAECs. Furthermore, bioinformatics predictions and dual-luciferase reporter assays indicated that zinc finger E-box-binding homeobox 2 (ZEB2) was a direct target gene of miRNA-200c-3p and that ZEB2 expression was inversely correlated with the levels of miRNA-200c-3p in RRAECs after exposure to Ang II. The effects of ZEB2 silencing were similar to the inhibitory effects observed following miRNA-200c-3p overexpression, and recovered ZEB2 expression reversed the anti-proliferative and anti-migratory influence of miRNA-200c-3p upregulation in RRAECs induced by Ang II. The present study indicated that miRNA-200c-3p might suppress the proliferation and migration of Ang II-induced RRAECs by targeting ZEB2. The miRNA-200c-3p/ZEB2 axis will provide valuable insights into the clinical management of hypertension-related kidney disease.
Assuntos
Movimento Celular/genética , Proliferação de Células/genética , Células Endoteliais/patologia , Nefropatias/genética , MicroRNAs/genética , Artéria Renal/patologia , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Angiotensina II/genética , Animais , Linhagem Celular , Hipertensão/genética , Hipertensão/patologia , Nefropatias/patologia , Ratos , Regulação para Cima/genéticaRESUMO
The mechanisms underlying electrical rhythmicity in smooth muscle of the proximal colon are incompletely understood. Our aim was to identify patterns of electrical rhythmicity in smooth muscle of the proximal region of isolated whole mouse colon and characterize their mechanisms of origin. Two independent extracellular recording electrodes were used to record the patterns of electrical activity in smooth muscle of the proximal region of whole isolated mouse colon. Cross-correlation analysis was used to quantify spatial coordination of these electrical activities over increasing electrode separation distances. Four distinct neurogenic patterns of electrical rhythmicity were identified in smooth muscle of the proximal colon, three of which have not been identified and consisted of bursts of rhythmic action potentials at 1-2 Hz that were abolished by hexamethonium. These neurogenic patterns of electrical rhythmicity in smooth muscle were spatially and temporally synchronized over large separation distances (≥2 mm rosto-caudal axis). Myogenic slow waves could be recorded from the same preparations, but they showed poor spatial and temporal coordination over even short distances (≤1 mm rostro-caudal axis). It is not commonly thought that electrical rhythmicity in gastrointestinal smooth muscle is dependent upon the enteric nervous system. Here, we identified neurogenic patterns of electrical rhythmicity in smooth muscle of the proximal region of isolated mouse colon, which are dependent on synaptic transmission in the enteric nervous system. If the whole colon is studied in vitro, recordings can preserve novel neurogenic patterns of electrical rhythmicity in smooth muscle.NEW & NOTEWORTHY Previously, it has not often been thought that electrical rhythmicity in smooth muscle of the gastrointestinal tract is dependent upon the enteric nervous system. We identified patterns of electrical rhythmicity in smooth muscle of the mouse proximal colon that were abolished by hexamethonium and involved the temporal synchronization of smooth muscle membrane potential over large spatial fields. We reveal different patterns of electrical rhythmicity in colonic smooth muscle that are dependent on the ENS.
Assuntos
Colo/inervação , Colo/fisiologia , Motilidade Gastrointestinal/fisiologia , Músculo Liso/inervação , Músculo Liso/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Colo/efeitos dos fármacos , Eletrodos Implantados , Fenômenos Eletrofisiológicos/fisiologia , Sistema Nervoso Entérico/efeitos dos fármacos , Sistema Nervoso Entérico/fisiologia , Feminino , Bloqueadores Ganglionares/farmacologia , Hexametônio/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologiaRESUMO
Nine new compounds targeting the transient receptor potential vanilloid-4 (TRPV4) were synthesized and their biological activities toward TRPV4 were determined using freshly isolated mouse skin macrophages through live cell Ca2+ imaging assay. Three compounds 4b, 4c, and 4i exhibited higher percentages of in vitro activation of TRPV4 as 48.1%, 59.3% and 33.5%, which are comparable to 56.4% activation response of the reported TRPV4 agonist GSK1016790A (3). The compound 4i was chosen for 11C-radiosynthesis using its phenol precursor 4g to reacted with [11C]methyl iodide. The radiosynthesis was achieved with good radiochemical yield (16 ± 5%), high chemical and radiochemical purity (>95%), and high molar activity (16-21 GBq/µmol, decay corrected to the end of bombardment, EOB n ≥ 4). Furthermore, the initial ex vivo biodistribution study in rats showed that [11C]4i had higher uptake in kidney, liver and small intestine compared to other tissues with rapid washout.
Assuntos
Compostos Radiofarmacêuticos/farmacologia , Canais de Cátion TRPV/agonistas , Animais , Cálcio/análise , Radioisótopos de Carbono , Relação Dose-Resposta a Droga , Ligantes , Camundongos , Estrutura Molecular , Traçadores Radioativos , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Relação Estrutura-Atividade , Distribuição TecidualRESUMO
Targeted cell ablation is a powerful approach for studying the role of specific cell populations in a variety of organotypic functions, including cell differentiation, and organ generation and regeneration. Emerging tools for permanently or conditionally ablating targeted cell populations and transiently inhibiting neuronal activities exhibit a diversity of application and utility. Each tool has distinct features, and none can be universally applied to study different cell types in various tissue compartments. Although these tools have been developed for over 30 years, they require additional improvement. Currently, there is no consensus on how to select the tools to answer the specific scientific questions of interest. Selecting the appropriate cell ablation technique to study the function of a targeted cell population is less straightforward than selecting the method to study a gene's functions. In this review, we discuss the features of the various tools for targeted cell ablation and provide recommendations for optimal application of specific approaches.
Assuntos
Bacteriocinas/metabolismo , Ácido Clodrônico/química , Toxina Diftérica/genética , Optogenética/métodos , Simplexvirus/fisiologia , Animais , Ácido Clodrônico/toxicidade , Toxina Diftérica/metabolismo , Humanos , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Neurônios/fisiologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Simplexvirus/enzimologiaRESUMO
Zinc is a transition metal that has a long history of use as an anti-inflammatory agent. It also soothes pain sensations in a number of animal models. However, the effects and mechanisms of zinc on chemotherapy-induced peripheral neuropathy remain unknown. Here we show that locally injected zinc markedly reduces neuropathic pain in male and female mice induced by paclitaxel, a chemotherapy drug, in a TRPV1-dependent manner. Extracellularly applied zinc also inhibits the function of TRPV1 expressed in HEK293 cells and mouse DRG neurons, which requires the presence of zinc-permeable TRPA1 to mediate entry of zinc into the cytoplasm. Moreover, TRPA1 is required for zinc-induced inhibition of TRPV1-mediated acute nociception. Unexpectedly, zinc transporters, but not TRPA1, are required for zinc-induced inhibition of TRPV1-dependent chronic neuropathic pain produced by paclitaxel. Together, our study demonstrates a novel mechanism underlying the analgesic effect of zinc on paclitaxel-induced neuropathic pain that relies on the function of TRPV1.SIGNIFICANCE STATEMENT The chemotherapy-induced peripheral neuropathy is a major limiting factor affecting the chemotherapy patients. There is no effective treatment available currently. We demonstrate that zinc prevents paclitaxel-induced mechanical hypersensitivity via inhibiting the TRPV1 channel, which is involved in the sensitization of peripheral nociceptors in chemotherapy. Zinc transporters in DRG neurons are required for the entry of zinc into the intracellular side, where it inhibits TRPV1. Our study provides insight into the mechanism underlying the pain-soothing effect of zinc and suggests that zinc could be developed to therapeutics for the treatment of chemotherapy-induced peripheral neuropathy.
Assuntos
Antineoplásicos Fitogênicos/toxicidade , Neuralgia/metabolismo , Paclitaxel/toxicidade , Canais de Cátion TRPV/antagonistas & inibidores , Acetato de Zinco/farmacologia , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia/induzido quimicamente , Canais de Cátion TRPV/efeitos dos fármacosRESUMO
The enteric nervous system (ENS) contains millions of neurons essential for organization of motor behavior of the intestine. It is well established that the large intestine requires ENS activity to drive propulsive motor behaviors. However, the firing pattern of the ENS underlying propagating neurogenic contractions of the large intestine remains unknown. To identify this, we used high-resolution neuronal imaging with electrophysiology from neighboring smooth muscle. Myoelectric activity underlying propagating neurogenic contractions along murine large intestine [also referred to as colonic migrating motor complexes, (CMMCs)] consisted of prolonged bursts of rhythmic depolarizations at a frequency of â¼2 Hz. Temporal coordination of this activity in the smooth muscle over large spatial fields (â¼7 mm, longitudinally) was dependent on the ENS. During quiescent periods between neurogenic contractions, recordings from large populations of enteric neurons, in mice of either sex, revealed ongoing activity. The onset of neurogenic contractions was characterized by the emergence of temporally synchronized activity across large populations of excitatory and inhibitory neurons. This neuronal firing pattern was rhythmic and temporally synchronized across large numbers of ganglia at â¼2 Hz. ENS activation preceded smooth muscle depolarization, indicating rhythmic depolarizations in smooth muscle were controlled by firing of enteric neurons. The cyclical emergence of temporally coordinated firing of large populations of enteric neurons represents a unique neural motor pattern outside the CNS. This is the first direct observation of rhythmic firing in the ENS underlying rhythmic electrical depolarizations in smooth muscle. The pattern of neuronal activity we identified underlies the generation of CMMCs.SIGNIFICANCE STATEMENT How the enteric nervous system (ENS) generates neurogenic contractions of smooth muscle in the gastrointestinal (GI) tract has been a long-standing mystery in vertebrates. It is well known that myogenic pacemaker cells exist in the GI tract [called interstitial cells of Cajal (ICCs)] that generate rhythmic myogenic contractions. However, the mechanisms underlying the generation of rhythmic neurogenic contractions of smooth muscle in the GI tract remains unknown. We developed a high-resolution neuronal imaging method with electrophysiology to address this issue. This technique revealed a novel pattern of rhythmic coordinated neuronal firing in the ENS that has never been identified. Rhythmic neuronal firing in the ENS was found to generate rhythmic neurogenic depolarizations in smooth muscle that underlie contraction of the GI tract.
Assuntos
Sistema Nervoso Entérico/fisiologia , Músculo Liso/fisiologia , Complexo Mioelétrico Migratório/fisiologia , Animais , Feminino , Intestinos/inervação , Intestinos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroimagem/métodosRESUMO
Neointima formation is a major contributor to arteriovenous fistula (AVF) failure. We have previously shown that activation of the Notch signaling pathway contributes to neointima formation by promoting the migration of vascular smooth muscle cells (VSMCs) into the venous anastomosis. In the current study we investigated the mechanisms underlying the dedifferentiation and migration of VSMCs, and in particular the role of bone marrow-derived fibroblast specific protein 1 (FSP-1)+ cells, another cell type found in models of vascular injury. Using VSMC-specific reporter mice, we found that most of the VSMCs participating in AVF neointima formation originated from dedifferentiated VSMCs. We also observed infiltration of bone marrow-derived FSP-1+ cells into the arterial anastomosis where they could interact with VSMCs. In vitro, conditioned media from FSP-1+ cells stimulated VSMC proliferation and phenotype switching. Activated Notch signaling transformed FSP-1+ cells into type I macrophages and stimulated secretion of cytokines and growth factors. Pretreatment with a Notch inhibitor or knockout of the canonical downstream factor RBP-Jκ in bone marrow-derived FSP1+ cells decreased FSP1+ cell infiltration into murine AVFs, attenuating VSMC dedifferentiation and neointima formation. Our results suggest that targeting Notch signaling could provide a new therapeutic strategy to improve AVF patency.
Assuntos
Derivação Arteriovenosa Cirúrgica/efeitos adversos , Miócitos de Músculo Liso/patologia , Neointima/patologia , Receptores Notch/metabolismo , Diálise Renal/efeitos adversos , Animais , Desdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Neointima/etiologia , Neointima/prevenção & controle , Cultura Primária de Células , Receptores Notch/antagonistas & inibidores , Diálise Renal/métodos , Insuficiência Renal Crônica/terapia , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Transdução de Sinais/efeitos dos fármacos , Grau de Desobstrução Vascular/efeitos dos fármacosRESUMO
BACKGROUND & AIMS: Strategies are needed to increase gastrointestinal transit without systemic pharmacologic agents. We investigated whether optogenetics, focal application of light to control enteric nervous system excitability, could be used to evoke propagating contractions and increase colonic transit in mice. METHODS: We generated transgenic mice with Cre-mediated expression of light-sensitive channelrhodopsin-2 (ChR2) in calretinin neurons (CAL-ChR2 Cre+ mice); Cre- littermates served as controls. Colonic myenteric neurons were analyzed by immunohistochemistry, patch-clamp, and calcium imaging studies. Motility was assessed by mechanical, electrophysiological, and video recording in vitro and by fecal output in vivo. RESULTS: In isolated colons, focal light stimulation of calretinin enteric neurons evoked classic polarized motor reflexes (50/58 stimulations), followed by premature anterograde propagating contractions (39/58 stimulations). Light stimulation could evoke motility from sites along the entire colon. These effects were prevented by neural blockade with tetrodotoxin (n = 2), and did not occur in control mice (n = 5). Light stimulation of proximal colon increased the proportion of natural fecal pellets expelled over 15 minutes in vitro (75% ± 17% vs 32% ± 8% for controls) (P < .05). In vivo, activation of wireless light-emitting diodes implanted onto the colon wall significantly increased hourly fecal pellet output in conscious, freely moving mice (4.2 ± 0.4 vs 1.3 ± 0.3 in controls) (P < .001). CONCLUSIONS: In studies of mice, we found that focal activation of a subset of enteric neurons can increase motility of the entire colon in vitro, and fecal output in vivo. Optogenetic control of enteric neurons might therefore be used to modify gut motility.
Assuntos
Colo/fisiologia , Sistema Nervoso Entérico/fisiologia , Trânsito Gastrointestinal/efeitos da radiação , Luz , Optogenética/métodos , Animais , Calbindina 2/genética , Calbindina 2/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Channelrhodopsins/efeitos da radiação , Colo/inervação , Colo/efeitos da radiação , Sistema Nervoso Entérico/citologia , Trânsito Gastrointestinal/genética , Camundongos , Camundongos Transgênicos , Modelos Animais , Neurônios/metabolismo , Neurônios/efeitos da radiaçãoRESUMO
The mechanosensitive Merkel cell-neurite complex comprising two distinct cell types in both hairy and glabrous skin has been widely recognized as touch receptor for more than 100 years. In 2014, three elegant studies further demonstrated that the Merkel cell-neurite complex mediates touch transduction via the mechanosensitive Piezo2 channel. However, whether it is involved in genesis of itch and pain sensations, has been unclear. Recently, we reported that Merkel cells modulate the development of mechanical itch under the conditions of dry skin and aging, whereas two other studies demonstrated that Piezo2 channel mediates mechanical pain. In this assay, we summarized the current knowledge of Merkel disk under both normal and pathological conditions, with a focus on its role in touch, itch, and pain.
Assuntos
Células de Merkel/fisiologia , Neuritos/fisiologia , Prurido/etiologia , Animais , Humanos , Hiperalgesia/etiologiaRESUMO
BACKGROUND: Chronic itch is a highly debilitating symptom that underlies many medical disorders with no universally effective treatments. Although unique neuronal signaling cascades in the sensory ganglia and spinal cord have been shown to critically promote the pathogenesis of chronic itch, the role of skin-associated cells remains poorly understood. OBJECTIVE: We sought to examine the cutaneous mechanisms underlying transient receptor potential vanilloid 4 (TRPV4)-mediated allergic and nonallergic chronic itch. METHODS: Expression of TRPV4 in chronic itch and healthy control skin preparations was examined by using real-time RT-PCR. Trpv4eGFP mice were used to study the expression and function of TRPV4 in the skin by means of immunofluorescence staining, flow cytometry, calcium imaging, and patch-clamp recordings. Genetic and pharmacologic approaches were used to examine the role and underlying mechanisms of TRPV4 in mouse models of dry skin-associated chronic itch and spontaneous scratching associated with squaric acid dibutylester-induced allergic contact dermatitis. RESULTS: TRPV4 is selectively expressed by dermal macrophages and epidermal keratinocytes in mice. Lineage-specific deletion of TRPV4 in macrophages and keratinocytes reduces allergic and nonallergic chronic itch in mice, respectively. Importantly, TRPV4 expression is significantly increased in skin biopsy specimens from patients with chronic idiopathic pruritus in comparison with skin from healthy control subjects. Moreover, TRPV4-dependent chronic itch requires 5-hydroxytryptamine (5-HT) signaling secondary to activation of distinct 5-HT receptors in mice with allergic and those with nonallergic chronic itch conditions. CONCLUSION: Our study reveals previously unrecognized mechanisms by which TRPV4-expressing epithelial and immune cells in the skin critically and dynamically mediate chronic itch and unravels novel targets for therapeutics in the setting of chronic itch.