Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 269: 115745, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029583

RESUMO

Magnetic graphene oxide nanocomposites (MGO NPs) have been widely studied in biomedical applications. However, their cytotoxicity and underlying mechanisms remain unclear. In this study, the biosafety of MGO NPs was investigated, and the mechanism involved in ferroptosis was further explored. MGO can produce cytotoxicity in ADSCs, which is dependent on their concentration. Ferroptosis was involved in MGO NP-induced ADSC survival inhibition by increasing total ROS and lipid ROS accumulation as well as regulating the expression levels of ferroptosis-related genes and proteins. GPX4 played a critical role in the MGO NP-induced ADSC ferroptosis process, and overexpressing GPX4 suppressed ferroptosis to increase cell survival. This study provides a theoretical basis for the biosafety management of MGO NPs used in the field of biomedical treatment.


Assuntos
Ferroptose , Grafite , Nanocompostos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Ferroptose/genética , Grafite/toxicidade , Óxido de Magnésio , Fenômenos Magnéticos , Nanocompostos/toxicidade , Espécies Reativas de Oxigênio , Animais , Ratos , Células-Tronco Mesenquimais/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
2.
J Perianesth Nurs ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38878034

RESUMO

PURPOSE: The purpose of this study was to compare the effect of ultrasound-guided continuous erector spinae plane block to continuous thoracic paravertebral block on postoperative analgesia in elderly patients who underwent thoracoscopic lobectomy. DESIGN: Randomized controlled trial. METHODS: Elderly patients (N = 50) who underwent nonemergent thoracoscopic lobectomy in the thoracic surgery department of our hospital from January 2019 to December 2020 were selected and randomly divided into continuous erector spinae block (ESPB; n = 25) group and continuous thoracic paravertebral block (TPVB; n = 25) group. The patients in the two groups were guided by ultrasound with ESPB or TPVB before anesthesia induction. The visual analog scale at rest and cough in 2 hours, 6 hours, 8 hours, 12 hours, 24 hours, 48 hours after surgery, the supplementary analgesic dosage of tramadol, time of tube placement, the stay time in postanesthesia care unit (PACU), the first ambulation time after surgery, the length of postoperative hospital stay and postoperative complications were recorded. FINDINGS: There were no significant differences between the two groups in visual analog scale score at rest and cough at each time point and supplementary analgesic dosage of tramadol within 48 hours after surgery (P > .05). The time of tube placement and the postoperative hospital stay in ESPB group was significantly shorter than that in TPVB group (P < .05). There were no differences in PACU residence time and first ambulation time between the two groups (P > .05). There were 4 patients in TPVB group and 2 patients in ESPB group who had nausea and vomiting (P > .05), 1 case of pneumothorax and 1 case of fever in the TPVB group. There were no incision infections or respiratory depression requiring clinical intervention in either group. CONCLUSIONS: Both ESPB and TPVB alleviated the patients postoperative pain effectively for elderly patients underwent thoracoscopic lobectomy. Compared with TPVB, patients with ESPB have a shorter tube placement time, fewer complications and faster postoperative recovery.

3.
Angew Chem Int Ed Engl ; : e202407277, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780892

RESUMO

Chiral multi-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials hold promise for circularly polarized organic light-emitting diodes (CP-OLEDs) and 3D displays. Herein, we present two pairs of tetraborated intrinsically axial CP-MR-TADF materials, R/S-BDBF-BOH and R/S-BDBT-BOH, with conjugation-extended bidibenzo[b,d]furan and bidibenzo[b,d]thiophene as chiral sources, which effectively participate in the distribution of the frontier molecular orbitals. Due to the heavy-atom effect, sulfur atoms are introduced to accelerate the reverse intersystem crossing process and increase the efficiency of molecules. R/S-BDBF-BOH and R/S-BDBT-BOH manifest ultra-pure blue emission with a maximum at 458/459 nm with a full width at half maximum of 27 nm, photoluminescence quantum yields of 90 %/91 %, and dissymmetry factors (|gPL|) of 6.8×10-4/8.5×10-4, respectively. Correspondingly, the CP-OLEDs exhibit good performances with an external quantum efficiency of 30.1 % and |gEL| factors of 1.2×10-3.

4.
Br J Cancer ; 128(2): 219-231, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347964

RESUMO

BACKGROUND: Hand-foot syndrome (HFS) is a serious dose-limiting cutaneous toxicity of capecitabine-containing chemotherapy, leading to a deteriorated quality of life and negative impacts on chemotherapy treatment. The symptoms of HFS have been widely reported, but the precise molecular and cellular mechanisms remain unknown. The metabolic enzyme of capecitabine, thymidine phosphorylase (TP) may be related to HFS. Here, we investigated whether TP contributes to the HFS and the molecular basis of cellular toxicity of capecitabine. METHODS: TP-/- mice were generated to assess the relevance of TP and HFS. Cellular toxicity and signalling mechanisms were assessed by in vitro and in vivo experiments. RESULTS: TP-/- significantly reduced capecitabine-induced HFS, indicating that the activity of TP plays a critical role in the development of HFS. Further investigations into the cellular mechanisms revealed that the cytotoxicity of the active metabolite of capecitabine, 5-DFUR, was attributed to the cleavage of GSDME-mediated pyroptosis. Finally, we demonstrated that capecitabine-induced HFS could be reversed by local application of the TP inhibitor tipiracil. CONCLUSION: Our findings reveal that the presence of elevated TP expression in the palm and sole aggravates local cell cytotoxicity, further explaining the molecular basis underlying 5-DFUR-induced cellular toxicity and providing a promising approach to the therapeutic management of HFS.


Assuntos
Fluoruracila , Síndrome Mão-Pé , Animais , Camundongos , Capecitabina/farmacologia , Fluoruracila/farmacologia , Síndrome Mão-Pé/tratamento farmacológico , Síndrome Mão-Pé/etiologia , Piroptose , Timidina Fosforilase/genética , Timidina Fosforilase/metabolismo , Qualidade de Vida , Desoxicitidina/efeitos adversos
5.
J Environ Manage ; 341: 118076, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148767

RESUMO

Biochar is considered a good activator for use in advanced oxidation technology. However, dissolved solids (DS) released from biochar cause unstable activation efficiency. Biochar prepared from saccharification residue of barley straw (BC-SR) had less DS than that prepared directly from barley straw (BC-O). Moreover, BC-SR had a higher C content, degree of aromatization, and electrical conductivity than BC-O. Although the effects of BC-O and BC-SR on activation of Persulfate (PS) to remove phenol were similar, the activation effect of DS from BC-O was 73% higher than that of DS from BC-SR. Moreover, the activation effect of DS was shown to originate from its functional groups. Importantly, BC-SR had higher activation stability than BC-O owing to the stable graphitized carbon structure of BC-SR. Identification of reactive oxygen species showed that SO4•-, •OH, and 1O2 were all effective in degradation by BC-SR/PS and BC-O/PS systems, but their relative contributions differed. Furthermore, BC-SR as an activator showed high anti-interference ability in the complex groundwater matrix, indicating it has practical application value. Overall, this study provides novel insight that can facilitate the design and optimization of a green, economical, stable, and efficient biochar-activated PS for groundwater organic pollution remediation.


Assuntos
Fenol , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Sulfatos/química , Fenóis/análise , Carvão Vegetal/química , Oxirredução
6.
J Sci Food Agric ; 102(7): 2928-2936, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34762318

RESUMO

BACKGROUND: Using agricultural wastes to produce single-cell proteins (SCP) can reduce production costs effectively. The aims of this study were to investigate the effects of enzyme loading on the components of rice straw (RS) hydrolysate and their effects on the growth of yeast. RESULTS: At the same glucose concentration, the dry weight of cells produced in the hydrolysate was 2.89 times higher than that in 2 g L-1 yeast extract (YE) medium, indicating that the hydrolysate was a suitable substrate for yeast growth. Ethanol precipitation followed by analysis showed that there were many oligosaccharides in the hydrolysate. The amount of cellulase had an important effect on the production of monosaccharides but had a smaller effect on the amounts and compositions of oligosaccharides. Adding oligosaccharides to the medium had no effect on ethanol production, but it promoted yeast growth and increased SCP production effectively. The results indicate that oligosaccharides were an important growth factor for yeast in the hydrolysate. Compared with YE medium, the cost of the medium with the hydrolysate was reduced by 68.47% when the same dry cell weight was obtained. CONCLUSION: Oligosaccharides in the hydrolysate can improve SCP production with low nutrient cost. This finding could reduce the amounts of cellulase required during saccharification and nutrients during culture, providing a new low-cost method for SCP production. © 2021 Society of Chemical Industry.


Assuntos
Celulase , Oryza , Celulase/metabolismo , Meios de Cultura/metabolismo , Etanol/metabolismo , Fermentação , Hidrólise , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Oryza/química , Saccharomyces cerevisiae/metabolismo
7.
Pestic Biochem Physiol ; 170: 104684, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32980064

RESUMO

As important chemical pesticides, protoporphyrinogen oxidase (PPO, EC 1.3.3.4) herbicides play a vital role in weed management. Herein, in a search for novel PPO herbicides, a series of phenoxypyridine-2-pyrrolidinone derivatives were synthesized and their herbicidal activities were tested. To confirm the structures of the newly synthesized compounds, a colorless single crystal of compound 9d was obtained and crystallographic data collected. PPO inhibition experiments showed that most compounds have PPO inhibitory effects. The half-maximal inhibitory concentration (IC50) of compound 9d and oxyfluorfen were 0.041 mg/L and 0.043 mg/L, respectively, which showed compound 9d was the most potent compound. Compound 9d reduced the Chlorophyll a (Chl a) and Chlorophyll b (Chl b) contents of Abutilon theophrasti (A. theophrasti), to 0.306 and 0.217 mg/g, respectively. Crop selectivity experiments and field trial indicated that compound 9d can potentially be used to develop post-emergence herbicides for weed control in rice, cotton, and peanut. Molecular docking studies showed that both oxyfluorfen and compound 9d can enter the PPO cavity to occupy the active site and compete with the porphyrin to block the chlorophyll synthesis process, affect photosynthesis, and eventually cause weed death. Compound 9d was found to be a promising lead compound for novel herbicide development.


Assuntos
Clorofila A , Herbicidas/farmacologia , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Protoporfirinogênio Oxidase , Piridinas/farmacologia , Pirrolidinonas , Relação Estrutura-Atividade
8.
J Environ Manage ; 271: 110957, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579519

RESUMO

Variability in the apparent CO2 fixation yield of four aerobic sulfur-oxidizing bacteria (Halothiobacillus neapolitanus DSM 15147, Thiobacillus thioparus DSM 505, Thiomonas intermedia DSM 18155, and Starkeya novella DSM 506) in autotrophic culturing was studied, and mutual effects of key intrinsic factors on CO2 fixation were explored. DSM 15147 and DSM 505 exhibited much higher CO2 fixation yields than DSM 18155 and DSM 506. The differences in CO2 fixation yield were determined not only by cbb gene transcription, but also by cell synthesis rate, which was determined by rRNA gene copy number; the rRNA gene copy number had a more significant effect than cbb gene transcription on the apparent CO2 fixation yield. Moreover, accumulation of EDOC was observed in all four strains during chemoautotrophic cultivation, and the proportion of EDOC accounting for total fixed organic carbon (TOC; EDOC/TOC ratio) was much higher in DSM 18155 and DSM 506 than in DSM 15147 and DSM 505. The accumulation of EDOC led to a significant decrease in the cbb gene transcription efficiency during cultivation, and a further feedback inhibitory effect on CO2 fixation.


Assuntos
Dióxido de Carbono , Enxofre , Alphaproteobacteria , Bactérias , Burkholderiales , Oxirredução
9.
Biodegradation ; 29(4): 313-321, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28321595

RESUMO

Improved soil carbon sink capability is important for the mitigation of carbon dioxide emissions and the enhancement of soil productivity. Biochar and organic fertilizer (OF) showed a significant improving effect on microalgae in soil carbon sink capacity, and the ultimate soil total organic carbons with microalgae-OF, microalgae-biochar, microalgae-OF-biochar were about 16, 67 and 58% higher than that with microalgae alone, respectively, indicating that carbon fixation efficiency of microalgae applied in soil was improved with biochar and OF whilst the soil carbon capacity was promoted, the mechanism of which is illustrated through simulative experiments. Organic fertilizer could spur algal conversion of carbon into cell molecules by increasing intracellular polysaccharide production of microalgae. Biochar could change carbon metabolism pathway of microalgae through altering the yield of intracellular saccharides, and yield and type of extracellular saccharides. There was a superimposition effect on the soil carbon sink when biochar and OF were both present with microalgae.


Assuntos
Sequestro de Carbono , Carvão Vegetal/metabolismo , Fertilizantes , Microalgas/metabolismo , Solo/química , Biodegradação Ambiental , Carbono/análise , Compostos Orgânicos/análise
10.
Angew Chem Int Ed Engl ; 57(45): 14891-14895, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30203906

RESUMO

A BF3 ⋅Et2 O-catalyzed C2-selective C-H borylation of indoles with bis(pinacolato)diboron was developed to afford indole-2-boronic acid pinacol esters. A variety of functional groups were tolerated, and other heteroarenes like pyrrole and benzo[b]thiophene were also suitable substrates. An electrophilic substitution mechanism was proposed based on the preliminary mechanistic studies. This novel transformation utilizes simple and cheap BF3 ⋅Et2 O as catalyst and exhibits unusual C2 regioselectivity, providing a significant non-transition-metal-catalyzed C-H borylation and an efficient method towards the synthesis of C2-functionalized heteroarenes.

11.
J Basic Microbiol ; 56(1): 26-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26641600

RESUMO

This study evaluated ethanol fermentation and its correlation with glutathione (GSH) synthesis under various cadmium-conditions with different metal ions and nitrogen sources. We found that corn steep liquor (CSL) and yeast extract have differential roles to play in GSH accumulation in cell even though both of them could alleviate the inhibition by cadmium. The different GSH accumulation in cell resulted from the different contents of metal ions in CSL and yeast extract. Intracellular GSH decreased with increasing calcium concentrations, and high calcium concentrations rendered the yeast more tolerant to cadmium stress than the nitrogen sources did. When the mole ratio of calcium to cadmium was 100:1, yeast tolerated 1000 µmol/L cadmium with no decrease in efficiency in ethanol production. As a result, the use of calcium allowed a significant saving of high-cost nutrient yeast extract with an efficient ethanol production, making the bioconversion of cadmium-containing biomass into ethanol possible.


Assuntos
Cádmio/química , Etanol/metabolismo , Metais/metabolismo , Nitrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Zea mays/metabolismo , Biomassa , Reatores Biológicos/microbiologia , Cálcio/química , Cátions/química , Cátions/metabolismo , Meios de Cultura , Fermentação , Glucose/metabolismo , Glutationa/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacos
12.
Environ Technol ; 36(9-12): 1246-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25367398

RESUMO

As the non-photosynthetic microbial community (NPMC) isolated from seawaters utilized inorganic carbon sources for carbon fixation, the concentrations and ratios of Na2CO3, NaHCO3, and CO2 were optimized by response surface methodology design. With H2 as the electron donor, the optimal carbon sources were 270 mg/L Na2CO3, 580 mg/L NaHCO3, and 120 mg/L CO2. The carbon fixation efficiency in response to total organic carbon (TOC) was up to 30.59 mg/L with optimal carbon sources, which was about 50% higher than that obtained with CO2 as the sole carbon source. The mixture of inorganic carbon sources developed a buffer system to prevent acidification or alkalization of the medium caused by CO2 or Na2CO3, respectively. Furthermore, CO2 and HCO3(-), the starting points of carbon fixation in the pathways of Calvin-Benson-Bassham and 3-hydroxypropionate cycles, were provided by the carbon source structure to facilitate carbon fixation by NPMC. However, in the presence of mixed electron donors composed of 1.25% Na2S, 0.50% Na2S2O3, and 0.457% NaNO2, the carbon source structure did not exhibit significant improvement in the carbon fixation efficiency, when compared with that achieved with CO2 as the sole carbon source. The positive effect of mixed electron donors on inorganic carbon fixation was much higher than that of the carbon source structure. Nevertheless, the carbon source structure could be used as an alternative to CO2 when using NPMC to fix carbon in industrial processes.


Assuntos
Ciclo do Carbono , Dióxido de Carbono/metabolismo , Crescimento Quimioautotrófico , Hidrogênio/metabolismo , Consórcios Microbianos , Nitrito de Sódio/metabolismo , Sulfetos/metabolismo , Tiossulfatos/metabolismo
13.
J Environ Sci (China) ; 26(8): 1709-16, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25108727

RESUMO

The universality of improved CO2 fixing upon the addition of mixed electron donors (MEDs) composed of Na2S, NO2(-), and S2O3(2-) to non-photosynthetic microbial communities (NPMCs) obtained from 12 locations in four oceans of the world was validated. The CO2 fixing efficiencies of NPMCs were universally enhanced by MED compared with those obtained using H2 alone as electron donor, with average increase of about 276%. An increase in microbial inoculation concentration could increase the net amount of CO2 fixing to 853.34 mg/L in the presence of MED. NO2(-) and S2O3(2-) may play the roles of both electron acceptor and electron donor under aerobic conditions, which may improve the energy utilization efficiency of NPMC and enhance the CO2 fixation efficiency. The sequence determination of 16S ribosomal deoxyribonucleic acid (rDNA) from 150 bacteria of NPMC showed that more than 50% of the bacteria were symbiotic and there were many heterotrophic bacteria such as Vibrio natriegens. These results indicate that NPMC acts as a symbiotic CO2 fixing system. The interaction between autotrophic and heterotrophic bacteria may be a crucial factor supporting ladder utilization and recycling of energy/carbon source.


Assuntos
Bactérias/metabolismo , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Oceanos e Mares , Bactérias/classificação , Água do Mar , Microbiologia da Água
14.
J Hazard Mater ; 465: 133481, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38219590

RESUMO

Catalytic ozone (O3) decomposition at ambient temperature is an efficient method to mitigate O3 pollution. However, practical application is hindered by the poor water resistance of catalysts. Herein, Ag-Hollandite (Ag-HMO) with varying Ag+ content was synthesized. Catalysts with more Ag+ exhibited improved efficiency and water-resistance, with the optimal one maintaining 98% O3 conversion at 70% relative humidity (RH) within 8 h. Physicochemical characterizations revealed that Ag+ had entered the tunnel of OMS-2, facilitating oxygen species removal. Notably, enhanced H2O desorption and the complete inhibition of chemisorbed water formation on Ag-HMO were the primary reasons for its high-efficiency O3 conversion across a wide humidity range. The underlying mechanism arises from the charge redistribution induced by the Ag-O interaction within the tunnel, which reduces acidity and modulates hydrophilicity. This study aims to contribute insights for designing catalysts with higher water-resistance.

15.
Bioresour Technol ; 406: 130990, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885727

RESUMO

Chemoautotrophs, the crucial contributors to biological carbon fixation, derive energy from reducing specific inorganic substances and utilize CO2 for growth. However, the release of extracellular free organic carbon (EFOC) by chemoautotrophic microorganisms can inhibit their own growth and metabolism. To reduce the feedback inhibition effect, a low-release biochar (BC-LR) was applied to adsorb EFOC. BC-LR not only adsorbed EFOC, but also selectively adsorbed the main inhibitory component, low molecular weight organics, in EFOC. In contrast, ordinary biochar could not effectively adsorb EFOC and its addition inhibited microbial growth and CO2 fixation. In Transwell culture, BC-LR promoted microbial growth by 190% and CO2 fixation by 29%, and exhibited better economic advantage, when compared with granular activated carbon. These findings provide a novel insight into the interaction between biochar and autotrophic microbial metabolism, offering an economically feasible approach to mitigate feedback inhibition of metabolites and promoting biological CO2 fixation.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123885, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38245969

RESUMO

Silver nanoparticles (AgNPs) are extensively used as an antibacterial agent, and monitoring the dissolution behavior of AgNPs in native biological environments is critical in both optimizing their performance and regulating their safety. However, current assessment methods rely on sophisticated analytical tools that are off-site and time-consuming with potential underestimations, due to complicated sample preparation. Although localized surface plasmon resonance (LSPR) sensing offers a facile method for the detection of AgNP dissolution, it is limited by low sensitivity and poor nanoparticle stability in native biological environments. Herein, we constructed a highly sensitive and stable LSPR sensor using gold-silver core-shell nanoparticles (Au@AgNPs), in combination with polymeric stabilizing agents, for the direct measurement of the Ag shell dissolution in native biological media. The high sensitivity was attributed to the acute and large LSPR shift generated by bimetallic nanoparticles. The sensor was used for the real-time monitoring of the Ag dissolution of Au@AgNPs during their co-culture with both bacteria and fibroblast cells. The media pH was found to dominate the Ag dissolution process, where Au@AgNPs exhibited bactericidal effects in the bacteria environment with relatively low pH, but they showed little toxicity towards fibroblast cells at pH 7.4. The minimum inhibition concentration of Au@AgNPs for bacterial growth was found similar to that of AgNO3 in terms of released Ag amount. Thus, stabilized Au@AgNPs not only allow the in-situ monitoring of Ag dissolution via LSPR sensing but also constitute an effective antibacterial agent with controlled toxicity, holding great potential for future biomedical and healthcare applications.


Assuntos
Nanopartículas Metálicas , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Prata , Antibacterianos/farmacologia , Ouro
17.
Sci Rep ; 14(1): 15516, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969651

RESUMO

The intelligent appearance quality classification method for Auricularia auricula is of great significance to promote this industry. This paper proposes an appearance quality classification method for Auricularia auricula based on the improved Faster Region-based Convolutional Neural Networks (improved Faster RCNN) framework. The original Faster RCNN is improved by establishing a multiscale feature fusion detection model to improve the accuracy and real-time performance of the model. The multiscale feature fusion detection model makes full use of shallow feature information to complete target detection. It fuses shallow features with rich detailed information with deep features rich in strong semantic information. Since the fusion algorithm directly uses the existing information of the feature extraction network, there is no additional calculation. The fused features contain more original detailed feature information. Therefore, the improved Faster RCNN can improve the final detection rate without sacrificing speed. By comparing with the original Faster RCNN model, the mean average precision (mAP) of the improved Faster RCNN is increased by 2.13%. The average precision (AP) of the first-level Auricularia auricula is almost unchanged at a high level. The AP of the second-level Auricularia auricula is increased by nearly 5%. And the third-level Auricularia auricula AP is increased by 1%. The improved Faster RCNN improves the frames per second from 6.81 of the original Faster RCNN to 13.5. Meanwhile, the influence of complex environment and image resolution on the Auricularia auricula detection is explored.


Assuntos
Aprendizado Profundo , Algoritmos , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Humanos
18.
J Hazard Mater ; 469: 133911, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38430597

RESUMO

The activation of peracetic acid (PAA) by activated carbon (AC) is a promising approach for reducing micropollutants in groundwater. However, to harness the PAA/AC system's potential and achieve sustainable and low-impact groundwater remediation, it is crucial to quantify the individual contributions of active species. In this study, we developed a combined degradation kinetic and adsorption mass transfer model to elucidate the roles of free radicals, electron transfer processes (ETP), and adsorption on the degradation of antibiotics by PAA in groundwater. Our findings reveal that ETP predominantly facilitated the activation of PAA by modified activated carbon (AC600), contributing to ∼61% of the overall degradation of sulfamethoxazole (SMX). The carbonyl group (CO) on the surface of AC600 was identified as a probable site for the ETP. Free radicals contributed to ∼39% of the degradation, while adsorption was negligible. Thermodynamic and activation energy analyses indicate that the degradation of SMX within the PAA/AC600 system requires a relatively low energy input (27.66 kJ/mol), which is within the lower range of various heterogeneous Fenton-like reactions, thus making it easily achievable. These novel insights enhance our understanding of the AC600-mediated PAA activation mechanism and lay the groundwork for developing efficient and sustainable technologies for mitigating groundwater pollution. ENVIRONMENTAL IMPLICATION: The antibiotics in groundwater raises alarming environmental concerns. As groundwater serves as a primary source of drinking water for nearly half the global population, the development of eco-friendly technologies for antibiotic-contaminated groundwater remediation becomes imperative. The innovative PAA/AC600 system demonstrates significant efficacy in degrading micropollutants, particularly sulfonamide antibiotics. By integrating degradation kinetics and adsorption mass transfer models, this study sheds light on the intricate mechanisms involved, emphasizing the potential of carbon materials as sustainable tools in the ongoing battle for clean and safe groundwater.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Antibacterianos , Ácido Peracético , Oxirredução , Carvão Vegetal , Adsorção , Elétrons , Peróxido de Hidrogênio , Sulfametoxazol
19.
MycoKeys ; 105: 267-294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855321

RESUMO

Panus is a typical wood-rotting fungi, which plays considerable roles in ecosystems and has significant economic value. The genus Panus currently consists of more than 100 species; however, only eight species have been reported from China. This study aims to distinguish and describe two novel species from the Panussimilis complex, namely Panusminisporus and Panusbaishanzuensis, one new record species from Zhejiang Province, Panussimilis and three common species, Panusconchatus, Panusneostrigosus and Panusrudis, based on detailed morphological and phylogenetic studies, relying on Chinese specimens. Panusminisporus is characterised by its reddish-brown pileus, decurrent lamellae with cross-veins, slender stipe, smaller basidiospores, wider generative hyphae and absence of sclerocystidia. Panusbaishanzuensis is featured by its pileus with concentric and darker ring zone, decurrent lamellae with cross-veins, shorter stipe, longer basidiospores, diverse and shorter cheilocystidia and smaller sclerocystidia. Internal transcribed spacer (ITS) regions, large subunit nuclear ribosomal RNA gene (nLSU) and translation elongation factor 1-α gene (tef-1α) were employed to perform a thorough phylogenetic analysis for genus Panus and related genera, using Bayesian Inference and Maximum Likelihood analysis. The results indicate that Panusminisporus and Panusbaishanzuensis form two independent clades within the Panussimilis complex themselves. Detailed descriptions, taxonomic notes, illustrations etc. were provided. In addition, a key to the reported species of Panus from China is also provided.

20.
Environ Sci Pollut Res Int ; 31(24): 35553-35566, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38733444

RESUMO

Volatile organic compounds (VOCs) frequently pose a threat to the biosphere, impacting ecosystems, flora, fauna, and the surrounding environment. Industrial emissions of VOCs often include the presence of water vapor, which, in turn, diminishes the adsorption capacity and efficacy of adsorbents. This occurs due to the competitive adsorption of water vapor, which competes with target pollutants for adsorption sites on the adsorbent material. In this study, hydrophobic activated carbons (BMIMPF6-AC (L), BMIMPF6-AC (g), and BMIMPF6-AC-H) were successfully prepared using 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) to adsorb toluene under humidity environment. The adsorption performance and mechanism of the resulting ionic liquid-modified activated carbon for toluene in a high-humidity environment were evaluated to explore the potential application of ionic liquids as hydrophobic modifiers. The results indicated that BMIMPF6-AC-H exhibited superior hydrophobicity. The toluene adsorption capacity of BMIMPF6-AC-H was 1.53 times higher than that of original activated carbon, while the adsorption capacity for water vapor was only 37.30% of it at 27 °C and 77% RH. The Y-N model well-fitted the dynamic adsorption experiments. To elucidate the microscopic mechanism of hydrophobic modification, the Independent Gradient Model (IGM) method was employed to characterize the intermolecular interactions between BMIMPF6 and toluene. Overall, this study introduces a new modifier for hydrophobic modification of activated carbon, which could enhance the efficiency of activated carbon in treating industrial VOCs.


Assuntos
Umidade , Líquidos Iônicos , Tolueno , Compostos Orgânicos Voláteis , Líquidos Iônicos/química , Adsorção , Tolueno/química , Compostos Orgânicos Voláteis/química , Carvão Vegetal/química , Poluentes Atmosféricos/química , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA