Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Kidney Int ; 103(4): 735-748, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36731609

RESUMO

Activation of the renin-angiotensin system is associated with podocyte injury and has been well demonstrated as a pivotal factor in the progression of chronic kidney disease. Podocyte energy metabolism is crucial for maintaining their physiological functions. However, whether renin-angiotensin system activation promotes chronic kidney disease progression by disturbing the energy metabolism of podocytes has not been elucidated. Angiotensin II, the main active molecule of the renin-angiotensin system, plays a crucial role in chronic kidney disease initiation and progression, but its impact on podocyte metabolism remains unclear. Here, we demonstrate a rapid decrease in the expression of pyruvate kinase M2, a key glycolytic enzyme, and reduced glycolytic flux in podocytes exposed to angiotensin II in vivo and in vitro. Podocyte-specific deletion of pyruvate kinase M2 in mice aggravated angiotensin II-induced glomerular and podocyte injury with foot process effacement and proteinuria. The inhibition of glycolysis was accompanied by adenosine triphosphate deficiency, cytoskeletal remodeling and podocyte apoptosis. Mechanistically, we found that angiotensin II-induced glycolysis impairment contributed to an insufficient energy supply to the foot process, leading to podocyte injury. Additionally, pyruvate kinase M2 expression was found to be reduced in podocytes from kidney biopsies of patients with hypertensive nephropathy and diabetic kidney disease. Thus, our findings suggest that glycolysis activation is a potential therapeutic strategy for podocyte injury.


Assuntos
Nefropatias Diabéticas , Podócitos , Insuficiência Renal Crônica , Camundongos , Animais , Podócitos/patologia , Angiotensina II/metabolismo , Anaerobiose , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Nefropatias Diabéticas/patologia , Insuficiência Renal Crônica/patologia , Glicólise
2.
Ren Fail ; 45(1): 2230318, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37427767

RESUMO

Podocytes play a critical role in maintaining normal glomerular filtration, and podocyte loss from the glomerular basement membrane (GBM) initiates and worsens chronic kidney disease (CKD). However, the exact mechanism underlying podocyte loss remains unclear. Fructose-2,6-biphosphatase 3 (PFKFB3) is a bifunctional enzyme that plays crucial roles in glycolysis, cell proliferation, cell survival, and cell adhesion. This study aimed to determine the role of PFKFB3 in angiotensin II (Ang II) kidney damage. We found that mice infused with Ang II developed glomerular podocyte detachment and impaired renal function accompanied by decreased PFKFB3 expression in vivo and in vitro. Inhibition of PFKFB3 with the PFKFB3 inhibitor 3PO further aggravated podocyte loss induced by Ang II. In contrast, activating PFKFB3 with the PFKFB3 agonist meclizine alleviated the podocyte loss induced by Ang II. Mechanistically, PFKFB3 knockdown likely aggravate Ang II-induced podocyte loss by suppressing talin1 phosphorylation and integrin beta1 subunit (ITGB1) activity. Conversely, PFKFB3 overexpression protected against Ang II-induced podocyte loss. These findings suggest that Ang II leads to a decrease in podocyte adhesion by suppressing PFKFB3 expression, and indicates a potential therapeutic target for podocyte injury in CKD.


Assuntos
Fosfofrutoquinase-2 , Podócitos , Insuficiência Renal Crônica , Animais , Camundongos , Angiotensina II/efeitos adversos , Regulação para Baixo , Fosforilação , Podócitos/metabolismo , Insuficiência Renal Crônica/metabolismo , Fosfofrutoquinase-2/genética
3.
Cell Mol Life Sci ; 79(1): 53, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34950960

RESUMO

SIRT6 is an NAD+ dependent deacetylase that belongs to the mammalian sirtuin family. SIRT6 is mainly located in the nucleus and regulates chromatin remodeling, genome stability, and gene transcription. SIRT6 extensively participates in various physiological activities such as DNA repair, energy metabolism, oxidative stress, inflammation, and fibrosis. In recent years, the role of epigenetics such as acetylation modification in renal disease has gradually received widespread attention. SIRT6 reduces oxidative stress, inflammation, and renal fibrosis, which is of great importance in maintaining cellular homeostasis and delaying the chronic progression of kidney disease. Here, we review the structure and biological function of SIRT6 and summarize the regulatory mechanisms of SIRT6 in kidney disease. Moreover, the role of SIRT6 as a potential therapeutic target for the progression of kidney disease will be discussed. SIRT6 plays an important role in kidney disease. SIRT6 regulates mitochondrial dynamics and mitochondrial biogenesis, induces G2/M cycle arrest, and plays an antioxidant role in nephrotoxicity, IR, obstructive nephropathy, and sepsis-induced AKI. SIRT6 prevents and delays progressive CKD induced by hyperglycemia, kidney senescence, hypertension, and lipid accumulation by regulating mitochondrial biogenesis, and has antioxidant, anti-inflammatory, and antifibrosis effects. Additionally, hypoxia, inflammation, and fibrosis are the main mechanisms of the AKI-to-CKD transition. SIRT6 plays a critical role in the AKI-to-CKD transition and kidney repair through anti-inflammatory, antifibrotic, and mitochondrial quality control mechanisms. AKI Acute kidney injury, CKD Chronic kidney disease.


Assuntos
Nefropatias/metabolismo , Rim/metabolismo , Sirtuínas , Animais , Epigênese Genética , Humanos , Rim/citologia , Rim/patologia , Camundongos , Mitocôndrias/metabolismo , Sirtuínas/química , Sirtuínas/fisiologia
4.
BMC Infect Dis ; 21(1): 88, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33472591

RESUMO

BACKGROUND: The treatment of critically ill patients with COVID-19 who were hospitalized in Wuhan has been reported. However, the clinical characteristics of patients who died of COVID-19 in regions with relatively scarce healthcare resources remain unknown. METHODS: In this retrospective study, a total of 14 patients who were admitted from January 18 to February 11, 2020 and died of COVID-19 were evaluated. The epidemiological, symptomatic, laboratory, radiological and treatment records were reviewed and analyzed. RESULTS: The mean age of the 14 patients was 56.7 (SD 15.3) years, and 8 (57.1%) were older than 50 years. Eight (57.1%) were men, and 11 (78.6%) had one or more high risk factors. The most common chronic diseases among these patients were cardiovascular disease (7, 50.0%), hypertension (6, 42.9%), and chronic kidney disease (5, 35.7%). General symptoms included cough (12, 85.7%), fever (11, 78.6%), and dyspnea (10, 71.4%). The median duration from the onset of symptoms to death was 11 (IQR 6.5-19.5) days, and the median duration from admission to death was 4.5 (1.0-11.8) days. Patients who died within 4.5 days had more severe pulmonary lesions, significantly reduced lymphocytes and elevated C-reactive protein (CRP). Most patients had organ dysfunction, including 13 (92.9%) with acute respiratory distress syndrome (ARDS), 4 (28.6%) with cardiac injury, 3 (21.4%) with acute kidney injury, and 3 (21.4%) with liver dysfunction. CONCLUSIONS: Elderly SARS-CoV-2-infected patients with comorbidities, especially those with ARDS and severe chest CT findings on admission, are at increased risk of death and deserve special attention and quality medical treatment.


Assuntos
COVID-19/epidemiologia , COVID-19/mortalidade , SARS-CoV-2 , Adulto , Idoso , COVID-19/complicações , China/epidemiologia , Comorbidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome do Desconforto Respiratório , Estudos Retrospectivos
5.
J Cell Physiol ; 235(10): 7433-7448, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32108342

RESUMO

Increasing evidence suggests that mitochondrial dysfunction plays a critical role in the development of diabetic kidney disease (DKD), however, its specific pathomechanism remains unclear. A-kinase anchoring protein (AKAP) 1 is a scaffold protein in the AKAP family that is involved in mitochondrial fission and fusion. Here, we show that rats with streptozotocin (STZ)-induced diabetes developed podocyte damage accompanied by AKAP1 overexpression and that AKAP1 closely interacted with the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). At the molecular level, high glucose (HG) promoted podocyte injury and Drp1 phosphorylation at Ser637 as proven by decreased mitochondrial membrane potential, elevated reactive oxygen species generation, reduced adenosine triphosphate synthesis, and increased podocyte apoptosis. Furthermore, the AKAP1 knockdown protected HG-induced podocyte injury and suppressed HG-induced Drp1 phosphorylation at Ser637. AKAP1 overexpression aggravated HG-induced mitochondrial fragmentation and podocyte apoptosis. The coimmunoprecipitation assay showed that HG-induced Drp1 interacted with AKAP1, revealing that AKAP1 could recruit Drp1 from the cytoplasm under HG stimulation. Subsequently, we detected the effect of drp1 phosphorylation on Ser637 by transferring several different Drp1 mutants. We demonstrated that activated AKAP1 promoted Drp1 phosphorylation at Ser637, which promoted the transposition of Drp1 to the surface of the mitochondria and accounts for mitochondrial dysfunction events. These findings indicate that AKAP1 is the main pathogenic factor in the development and progression of HG-induced podocyte injury through the destruction of mitochondrial dynamic homeostasis by regulating Drp1 phosphorylation in human podocytes.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Dinaminas/metabolismo , Glucose/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Podócitos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/fisiologia , Células Cultivadas , Citoplasma/metabolismo , Homeostase/fisiologia , Humanos , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/fisiologia , Fosforilação/fisiologia , Podócitos/fisiologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
6.
J Cell Physiol ; 234(12): 23559-23570, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31206670

RESUMO

Podocyte injury is a critical factor for the initiation and progression of diabetic kidney disease (DKD). However, the underlying mechanisms of podocyte injury in DKD have not been completely elucidated. Studies suggested that intracellular cholesterol accumulation was correlated with podocyte injury, but the cause of podocyte cholesterol disorders in DKD are still unknown. ADP-ribosylation factor 6 (Arf6) is a small GTPase with pleiotropic effects and has previously been shown to regulate ATP-binding cassette transporter 1 (ABCA1) recycling, and thus, cholesterol homeostasis. However, Arf6 involvement in cholesterol metabolism in podocytes is scarce. To investigate the role of Arf6 in cholesterol modulation in podocytes, the effect of Arf6 on the regulation of the cholesterol transporter ABCA1 was studied in podocytes in vivo and in vitro. Intracellular cholesterol accumulation was significantly increased in podocytes from streptozotocin-induced diabetic rats and that hyperglycemia downregulated the expression of Arf6. Arf6 knockdown could cause ABCA1 recycling disorders, and thus, further aggravate cholesterol accumulation in podocytes under high-glucose (HG) conditions. Our results demonstrate that HG-induced cholesterol accumulation and cellular injury in podocytes may be related to the recycling disorder of ABCA1 caused by the downexpression of Arf6 in DKD.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/metabolismo , Diabetes Mellitus Experimental/enzimologia , Nefropatias Diabéticas/enzimologia , Podócitos/enzimologia , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Transportador 1 de Cassete de Ligação de ATP/genética , Animais , Transporte Biológico , Glicemia/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Humanos , Masculino , Podócitos/patologia , Ratos Sprague-Dawley
8.
Metabolism ; 150: 155718, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925142

RESUMO

Podocytes are critical for maintaining permselectivity of the glomerular filtration barrier, and podocyte injury is a major cause of proteinuria in various primary and secondary glomerulopathies. Lipid dysmetabolism and inflammatory activation are the distinctive hallmarks of podocyte injury. Lipid accumulation and lipotoxicity trigger cytoskeletal rearrangement, insulin resistance, mitochondrial oxidative stress, and inflammation. Subsequently, inflammation promotes the progression of glomerulosclerosis and renal fibrosis via multiple pathways. These data suggest that lipid dysmetabolism positively or negatively regulates inflammation during podocyte injury. In this review, we summarize recent advances in the understanding of lipid metabolism and inflammation, and highlight the potential association between lipid metabolism and podocyte inflammation.


Assuntos
Nefropatias , Podócitos , Humanos , Metabolismo dos Lipídeos , Podócitos/metabolismo , Proteinúria/metabolismo , Nefropatias/metabolismo , Inflamação/metabolismo , Lipídeos
9.
Life Sci ; 349: 122722, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754814

RESUMO

AIMS: Steroidogenic acute regulatory (StAR)-related lipid transfer domain-3 (STARD3) is a sterol-binding protein that facilitates cholesterol transport between cellular organelles. Cholesterol accumulation in podocytes directly contributes to the pathogenesis of albuminuria and renal injury under the condition of diabetic kidney disease (DKD). The aim of this study is to determine the role of STARD3 on the intracellular distribution of cholesterol within podocytes. METHODS: In vivo and in vitro models of diabetes were performed. The protein levels of STARD3, Niemann-Pick disease type C1 (NPC1), and Niemann-Pick disease type C2 (NPC2) were respectively detected by western blot analysis, immunohistochemistry, and immunofluorescence. Filipin staining was used to evaluate the subcellular localization of cholesterol in podocytes. Mitochondrial damage was evaluated using JC-1 (CBIC2) and ROS (reactive oxygen species) assays. KEY FINDINGS: Upregulation of STARD3 under diabetes and hyperglycemia increases cholesterol transport from the late endosomal/lysosomal (LE/LY) to mitochondria, leading to mitochondrial cholesterol accumulation and cell injury in podocytes. Conversely, downregulating STARD3 expression attenuated mitochondrial cholesterol accumulation, and improved mitochondrial homeostasis. SIGNIFICANCE: STARD3 may govern intracellular cholesterol transport in podocytes, subsequently leading to regulation of mitochondrial metabolism. Therefore, targeting STARD3 emerges as a potential therapeutic strategy to mitigate diabetes-induced mitochondrial cholesterol accumulation and associated injury in podocytes.


Assuntos
Colesterol , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Mitocôndrias , Podócitos , Podócitos/metabolismo , Podócitos/patologia , Animais , Colesterol/metabolismo , Mitocôndrias/metabolismo , Camundongos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Masculino , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Transporte Biológico , Camundongos Endogâmicos C57BL , Humanos
10.
Cell Signal ; : 111308, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059756

RESUMO

BACKGROUND: The protection of the diabetic kidney by Empagliflozin (EMPA) is attributed to its interaction with the sodium glucose cotransporter 2 located on proximal tubular epithelial cells (PTECs). Estrogen-related receptor α (ESRRA), known for its high expression in PTECs and association with mitochondrial biogenesis, plays a crucial role in this process. This study aimed to explore the impact of ESRRA on mitochondrial mass in diabetic tubular injury and elucidate the mechanism underlying the protective effects of EMPA. METHODS: Mitochondrial changes in PTECs of 16-week-old diabetic mice were assessed using transmission electron microscopy (TEM) and RNA-sequences. In vivo, EMPA administration was carried out in db/db mice for 8 weeks, while in vitro experiments involved modifying ESRRA expression in HK2 cells using pcDNA-ESRRA or EMPA. RESULTS: Evaluation through TEM revealed reduced mitochondrial mass and swollen mitochondria in PTECs, whereas no significant changes were observed under light microscopy. Analysis of RNA-sequences identified 110 downregulated genes, including Esrra, associated with mitochondrial function. Notably, ESRRA overexpression rescued the loss of mitochondrial mass induced by high glucose (HG) in HK2 cells. EMPA treatment ameliorated the ultrastructural alterations and mitigated the downregulation of ESRRA both in db/db mice and HG-treated HK2 cells. CONCLUSION: The diminished expression of ESRRA is implicated in the decline of mitochondrial mass in PTECs during the early stages of diabetes, highlighting it as a key target of EMPA for preventing the progression of diabetic kidney injury.

11.
Adv Sci (Weinh) ; : e2405325, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083268

RESUMO

Renal tubular epithelial cells (TECs) undergo an energy-related metabolic shift from fatty acid oxidation to glycolysis during chronic kidney disease (CKD) progression. However, the mechanisms underlying this burst of glycolysis remain unclear. Herein, a new critical glycolysis regulator, the transcription factor forkhead box protein K1 (FOXK1) that is expressed in TECs during renal fibrosis and exhibits fibrogenic and metabolism-rewiring capacities is reported. Genetic modification of the Foxk1 locus in TECs alters glycolytic metabolism and fibrotic lesions. A surge in the expression of a set of glycolysis-related genes following FOXK1 protein activation contributes to the energy-related metabolic shift. Nuclear-translocated FOXK1 forms condensate through liquid-liquid phase separation (LLPS) to drive the transcription of target genes. Core intrinsically disordered regions within FOXK1 protein are mapped and validated. A therapeutic strategy is explored by targeting the Foxk1 locus in a murine model of CKD by the renal subcapsular injection of a recombinant adeno-associated virus 9 vector encoding Foxk1-short hairpin RNA. In summary, the mechanism of a FOXK1-mediated glycolytic burst in TECs, which involves the LLPS to enhance FOXK1 transcriptional activity is elucidated.

12.
Cell Death Dis ; 15(3): 217, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485717

RESUMO

Recently, innate immunity and inflammation were recognized as the key factors for acute kidney injury (AKI) caused by sepsis, which is closely related to high mortality. Stimulator of interferon genes (STING) has emerged as a critical component of innate immune and inflammatory responses. However, the role of STING in the pathogenesis of septic AKI remains unclear. This study demonstrated that the STING was significantly activated in tubular cells induced by lipopolysaccharide (LPS) in vivo and in vitro. Tubule-specific STING knockout attenuated LPS-induced renal dysfunction and pathological changes. Mechanistically, the STING pathway promotes NOD-like receptor protein 3 (NLRP3) activation. STING triggers endoplasmic reticulum (ER) stress to induce mitochondrial reactive oxygen species (mtROS) overproduction, enhancing thioredoxin-interacting protein activation and association with NLRP3. Eventually, the NLRP3 inflammasome leads to tubular cell inflammation and pyroptosis. This study revealed the STING-regulated network and further identified the STING/ER stress/mtROS/NLRP3 inflammasome axis as an emerging pathway contributing to tubular damage in LPS-induced AKI. Hence, targeting STING may be a promising therapeutic strategy for preventing septic AKI.


Assuntos
Injúria Renal Aguda , Piroptose , Humanos , Inflamassomos/metabolismo , Lipopolissacarídeos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Injúria Renal Aguda/patologia , Inflamação/patologia , Proteínas NLR , Estresse do Retículo Endoplasmático
13.
Cell Prolif ; 56(11): e13479, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37057309

RESUMO

Alteration of metabolic phenotype in podocytes directly contributes to the development of albuminuria and renal injury in conditions of diabetic kidney disease (DKD). This study aimed to identify and evaluate liver receptor homologue-1 (LRH-1) as a possible therapeutic target that alleviates glutamine (Gln) metabolism disorders and mitigates podocyte injury in DKD. Metabolomic and transcriptomic analyses were performed to characterize amino acid metabolism changes in the glomeruli of diabetic mice. Next, Western blotting, immunohistochemistry assays, and immunofluorescence staining were used to detect the expression of different genes in vitro and in vivo. Furthermore, Gln and glutamate (Glu) content as well as ATP generation were examined. A decrease in LRH-1 and glutaminase 2 (GLS2) expression was detected in diabetic podocytes. Conversely, the administration of LRH-1 agonist (DLPC) upregulated the expression of GLS2 and promoted glutaminolysis, with an improvement in mitochondrial dysfunction and less apoptosis in podocytes compared to those in vehicle-treated db/db mice. Our study indicates the essential role of LRH-1 in governing the Gln metabolism of podocytes, targeting LRH-1 could restore podocytes from diabetes-induced disturbed glutaminolysis in mitochondria.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Podócitos , Animais , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Rim/metabolismo , Glomérulos Renais/metabolismo , Podócitos/metabolismo
14.
Cell Signal ; 109: 110777, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37329999

RESUMO

An increasing number of studies have shown that immune inflammatory response plays a vital role in diabetic kidney disease (DKD). Nod-like receptor protein 3 (NLRP3) inflammasome-dependent inflammatory response is a key mechanism in the initiation and development of DKD. The stimulator of interferon genes (STING) is an adaptor protein that can drive noninfectious inflammation and pyroptosis. However, the mechanism of STING regulating immune inflammation and the interaction with NLRP3-dependent pyroptosis in high glucose state still remains unclear. This study evaluated the potential role of STING in high glucose (HG)-induced podocyte inflammation response. STING expression was significantly increased in db/db mice, STZ-treated diabetic mice, and HG-treated podocytes. Podocyte-specific deletion of STING alleviated podocyte injury, renal dysfunction, and inflammation in STZ-induced diabetic mice. STING inhibitor (H151) administration ameliorated inflammation and improved renal function in db/db mice. STING deletion in podocytes attenuated the activation of the NLRP3 inflammasome and podocyte pyroptosis in STZ-induced diabetic mice. In vitro, modulated STING expression by STING siRNA alleviated pyroptosis and NLRP3 inflammasome activation in HG-treated podocytes. NLRP3 over-expression offset the beneficial effects of STING deletion. These results indicate that STING deletion suppresses podocyte inflammation response through suppressing NLRP3 inflammasome activation and provide evidence that STING may be a potential target for podocyte injury in DKD.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Podócitos , Camundongos , Animais , Podócitos/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nefropatias Diabéticas/metabolismo , Proteínas NLR/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Inflamação/metabolismo
15.
Cell Prolif ; 55(6): e13229, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35567428

RESUMO

OBJECTIVES: Exposure of podocytes to angiotensin II (Ang II) enhances the abundance of the cell surface glycoprotein, low-density lipoprotein receptor (LDLR) and promotes significant changes in the cellular cholesterol content. Recent investigation provides evidence that the small GTPase Rab11 is involved in the regulation of LDLR, but the exact mechanisms remain unknown. In this study, the role of Rab11 in post-transcriptional regulation of LDLR was evaluated to investigate potential mechanisms of podocyte cholesterol dysregulation in chronic kidney disease. MATERIALS AND METHODS: Cholesterol content, LDLR and Rab11 expression were assessed in podocytes from Ang II-infused mice. In vitro, the intracellular localization of LDLR was detected under different conditions. Rab11 expression was modulated and we then explored the effect of anti-lipid cytotoxicity by detecting LDLR expression and trafficking, cholesterol content and apoptosis in podocytes. RESULTS: Cholesterol accumulation, upregulated expression of LDLR and Rab11 were discovered in podocytes from Ang II-infused mice. Ang II enhanced the co-precipitation of LDLR with Rab11 and accelerated the endocytic recycling of LDLR to the plasma membrane. Additionally, silencing Rab11 promoted lysosomal degradation of LDLR and alleviated Ang II-induced cholesterol accumulation and apoptosis in podocytes. Conversely, overexpression of Rab11 or inhibition of lysosomal degradation up-regulated the abundance of LDLR and aggravated podocyte cholesterol deposition. CONCLUSIONS: Rab11 triggers the endocytic trafficking and recycling of LDLR; overactivation of this pathway contributes to Ang II-induced podocyte cholesterol accumulation and injury.


Assuntos
Angiotensina II/metabolismo , Podócitos , Receptores de LDL/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Apoptose , Colesterol , Camundongos , Podócitos/metabolismo
16.
Metabolism ; 131: 155194, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35346693

RESUMO

Acute kidney injury (AKI) is a global public health concern associated with high morbidity and mortality. Although advances in medical management have improved the in-hospital mortality of severe AKI patients, the renal prognosis for AKI patients in the later period is not encouraging. Recent epidemiological investigations have indicated that AKI significantly increases the risk for the development of chronic kidney disease (CKD) and end-stage renal disease (ESRD) in the future, further contributing to the economic burden on health care systems. The transition of AKI to CKD is complex and often involves multiple mechanisms. Recent studies have suggested that renal tubular epithelial cells (TECs) are more prone to metabolic reprogramming during AKI, in which the metabolic process in the TECs shifts from fatty acid ß-oxidation (FAO) to glycolysis due to hypoxia, mitochondrial dysfunction, and disordered nutrient-sensing pathways. This change is a double-edged role. On the one hand, enhanced glycolysis acts as a compensation pathway for ATP production; on the other hand, long-term shut down of FAO and enhanced glycolysis lead to inflammation, lipid accumulation, and fibrosis, contributing to the transition of AKI to CKD. This review discusses developments and therapies focused on the metabolic reprogramming of TECs during AKI, and the emerging questions in this evolving field.


Assuntos
Injúria Renal Aguda , Falência Renal Crônica , Insuficiência Renal Crônica , Injúria Renal Aguda/metabolismo , Feminino , Fibrose , Humanos , Rim/metabolismo , Masculino , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo
17.
Cell Prolif ; 55(10): e13296, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35842903

RESUMO

OBJECTIVES: Increasing evidence suggests that mitochondrial dysfunction is the key driver of angiotensin II (Ang II)-induced kidney injury. This study was designed to investigate whether Sirtuin 6 (Sirt6) could affect Ang II-induced mitochondrial damage and the potential mechanisms. MATERIALS AND METHODS: Podocyte-specific Sirt6 knockout mice were infused with Ang II and cultured podocytes were stimulated with Ang II to evaluate the effects of Sirt6 on mitochondrial structure and function in podocytes. Immunofluorescence staining was used to detect protein expression and mitochondrial morphology in vitro. Electron microscopy was used to assess mitochondrial morphology in mice. Western blotting was used to quantify protein expression. RESULTS: Mitochondrial fission and decreased Sirt6 expression were observed in podocytes from Ang II-infused mice. In Sirt6-deficient mice, Ang II infusion induced increased apoptosis and mitochondrial fragmentation in podocytes than that in Ang II-infused wild-type mice. In cultured human podocytes, Sirt6 knockdown exacerbated Ang II-induced mitochondrial fission, whereas Sirt6 overexpression ameliorated the Ang II-induced changes in the balance between mitochondrial fusion and fission. Functional studies revealed that Sirt6 deficiency exacerbated mitochondrial fission by promoting dynamin-related protein 1 (Drp1) phosphorylation. Furthermore, Sirt6 mediated Drp1 phosphorylation by promoting Rho-associated coiled coil-containing protein kinase 1 (ROCK1) expression. CONCLUSION: Our study has identified Sirt6 as a vital factor that protects against Ang II-induced mitochondrial fission and apoptosis in podocytes via the ROCK1-Drp1 signalling pathway.


Assuntos
Podócitos , Sirtuínas , Angiotensina II/farmacologia , Animais , Apoptose , Dinaminas/metabolismo , Humanos , Camundongos , Dinâmica Mitocondrial , Estresse Oxidativo , Podócitos/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Quinases Associadas a rho/metabolismo
18.
Metabolism ; 134: 155245, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35780908

RESUMO

INTRODUCTION: Compromised glycolysis in podocytes contributes to the initiation of diabetic kidney disease (DKD). Podocyte injury is characterized by cytoskeletal remodeling and foot process fusion. Compromised glycolysis in diabetes likely leads to switch of energy supply in podocyte. However, the underlying mechanism by which disturbed energy supply in podocytes affects the cytoskeletal structure of podocytes remains unclear. METHODS: Metabolomic and transcriptomic analyses were performed on the glomeruli of db/db mice to examine the catabolism of glucose, fatty, and amino acids. Ornithine catabolism was targeted in db/db and podocyte-specific pyruvate kinase M2 knockout (PKM2-podoKO) mice. In vitro, expression of ornithine decarboxylase (ODC1) was modulated to investigate the effect of ornithine catabolism on mammalian target of rapamycin (mTOR) signaling and cytoskeletal remodeling in cultured podocytes. RESULTS: Multi-omic analyses of the glomeruli revealed that ornithine metabolism was enhanced in db/db mice compared with that in db/m mice under compromised glycolytic conditions. Additionally, ornithine catabolism was exaggerated in podocytes of diabetic PKM2-podoKO mice compared with that in diabetic PKM2flox/flox mice. In vivo, difluoromethylornithine (DFMO, inhibitor of ODC1) administration reduced urinary albumin excretion and alleviated podocyte foot process fusion in db/db mice. In vitro, 2-deoxy-d-glucose (2-DG) exposure induced mTOR signaling activation and cytoskeletal remodeling in podocytes, which was alleviated by ODC1-knockdown. Mechanistically, a small GTPase Ras homolog enriched in the brain (Rheb), a sensor of mTOR signaling, was activated by exposure to putrescine, a metabolic product of ornithine catabolism. CONCLUSION: These findings demonstrate that compromised glycolysis in podocytes under diabetic conditions enhances ornithine catabolism. The metabolites of ornithine catabolism contribute to mTOR signaling activation via Rheb and cytoskeletal remodeling in podocytes in DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Animais , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Glicólise , Mamíferos/metabolismo , Camundongos , Ornitina/farmacologia , Serina-Treonina Quinases TOR/metabolismo
19.
Int J Biol Sci ; 18(10): 4026-4042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844803

RESUMO

Podocyte injury is involved in the onset and progression of diabetic kidney disease (DKD) and is associated with mitochondrial abnormalities. Defective mitochondrial DNA (mtDNA) replication results in mitochondrial dysfunction. However, whether podocyte mtDNA replication is impaired in DKD is still unclear. A-kinase anchoring protein 1 (AKAP1) is localized in the outer mitochondrial membrane (OMM) and acts as a regulator and conductor of mitochondrial signals. Herein, we investigated the role of AKAP1 in high glucose-induced mtDNA replication. Decreased mtDNA replication and mitochondrial dysfunction occurred in podocytes of DKD. AKAP1 expression was up-regulated, and protein kinase C (PKC) signaling was activated under hyperglycemic conditions. AKAP1 recruited PKC and mediated La-related protein 1 (Larp1) phosphorylation, which reduced the expression of mitochondrial transcription factor A (TFAM), a key factor in mtDNA replication. In addition, mtDNA replication, mitochondrial function and podocyte injury were rescued by knocking down AKAP1 expression and the PKC inhibitor enzastaurin. In contrast, AKAP1 overexpression worsened the impairment of mtDNA replication and podocyte injury. In conclusion, our study revealed that AKAP1 phosphorylates Larp1 via PKC signaling activation to decrease mtDNA replication, which accelerates mitochondrial dysfunction and podocyte injury in DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Humanos , Mitocôndrias/metabolismo , Fosforilação , Podócitos/metabolismo
20.
Cell Signal ; 99: 110443, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35988808

RESUMO

Recent studies have reported that Angiotensin II (Ang II) contributes to podocyte injury by interfering with metabolism. Glycolysis is essential for podocytes and glycolysis abnormality is associated with glomerular injury in chronic kidney disease (CKD). Glycerol-3-phosphate (G-3-P) biosynthesis is a shunt pathway of glycolysis, in which cytosolic glycerol-3-phosphate dehydrogenase 1 (GPD1) catalyzes dihydroxyacetone phosphate (DHAP) to generate G-3-P in the presence of the NADH. G-3-P is not only a substrate in glycerophospholipids and glyceride synthesis but also can be oxidated by mitochondrial glycerol-3-phosphate dehydrogenase (GPD2) to regenerate DHAP in mitochondria. Since G-3-P biosynthesis links to glycolysis, mitochondrial metabolism and lipid synthesis, we speculate G-3-P biosynthesis abnormality is probably involved in podocyte injury. In this study, we demonstrated that Ang II upregulated GPD1 expression and increased G-3-P and glycerophospholipid syntheses in podocytes. GPD1 knockdown protected podocytes from Ang II-induced lipid accumulation and mitochondrial dysfunction. GPD1 overexpression exacerbated Ang II-induced podocyte injury. In addition, we proved that lipid accumulation and mitochondrial dysfunction were correlated with G-3-P content in podocytes. These results suggest that Ang II upregulates GPD1 and promotes G-3-P biosynthesis in podocytes, which promote lipid accumulation and mitochondrial dysfunction in podocytes.


Assuntos
Podócitos , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Fosfato de Di-Hidroxiacetona/metabolismo , Glicerídeos/metabolismo , Glicerol/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Glicerofosfolipídeos/metabolismo , Glicólise , Lipídeos , NAD/metabolismo , Fosfatos/metabolismo , Podócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA