RESUMO
BACKGROUND: Glutamate-rich WD repeat containing 1 (GRWD1) is over-expressed in a variety of malignant tumors and is considered to be a potential oncogene. However, its mechanism of action in gastric cancer (GC) is still unclear. METHODS: Data analysis, Immunohistochemistry, and Western Blot (WB) were performed to verify the expression of GRWD1 in GC and para-cancerous tissues. The association between GRWD1 expression and tumor size, tissue differentiation, lymph node metastasis, TNM stage, and prognosis was analyzed according to the high and low expression levels of GRWD1. The relationship between GRWD1 and Notch pathway was verified by data analysis and WB. The effects of GRWD1 on the proliferation, migration, and invasion of GC cells were verified by cell proliferation, migration, and invasion assays. We confirmed that the high expression of GRWD1 promoted the proliferation of GC cells in vivo through the tumor formation assay in nude mice. RESULTS: The expression of GRWD1 was higher in GC tissues than in para-cancerous tissues, and its expression was positively correlated with tumor size, lymph node metastasis, and TNM stage, but negatively correlated with differentiation grade and prognosis. GRWD1 over-expression increased ADAM metallopeptidase domain 17 (ADAM17) expression and promoted Notch1 intracellular domain (NICD) release to promote GC cell proliferation, migration, and invasion in vitro. Results from animal studies have shown that high GRWD1 expression could promote GC cell proliferation in vivo by activating the Notch signaling pathway. CONCLUSION: GRWD1 promotes GC progression through ADAM17-dependent Notch signaling, and GRWD1 may be a novel tumor marker and therapeutic target.
Assuntos
Proteína ADAM17 , Proteínas de Transporte , Neoplasias Gástricas , Animais , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Metástase Linfática , Camundongos Nus , Invasividade Neoplásica , Transdução de Sinais , Neoplasias Gástricas/patologia , Regulação para Cima , Proteínas de Transporte/metabolismo , Proteína ADAM17/metabolismoRESUMO
Background: Targeted therapies have improved the clinical outcomes of most patients with cancer. However, the heterogeneity of gastric cancer remains a major hurdle for precision treatment. Further investigations into tumor microenvironment heterogeneity are required to resolve these problems. Methods: In this study, bioinformatic analyses, including metabolism analysis, pathway enrichment, differentiation trajectory inference, regulatory network construction, and survival analysis, were applied to gain a comprehensive understanding of tumor microenvironment biology within gastric cancer using single-cell RNA-seq and public datasets and experiments were carried out to confirm the conclusions of these analyses. Results: We profiled heterogeneous single-cell atlases and identified eight cell populations with differential expression patterns. We identified two cancer-associated fibroblasts (CAFs) subtypes, with particular emphasis on the role of inflammatory cancer-associated fibroblasts (iCAFs) in EMT and lipid metabolic crosstalk within the tumor microenvironment. Notably, we detected two differentiation states of iCAFs that existed in different tissues with discrepant expression of genes involved in immuno-inflammation or ECM remodeling. Moreover, investigation of tumor-infiltrating myeloid cells has revealed the functional diversity of myeloid cell lineages in gastric cancer. Of which a proliferative cell lineage named C1QC+MKI67+TAMs was recognized with high immunosuppressive capacities, suggesting it has immune suppression and cell proliferation functions in the tumor niche. Finally, we explored regulatory networks based on ligand-receptor pairs and found crucial pro-tumor crosstalk between CAFs and myeloid cells in the tumor microenvironment (TME). Conclusion: These findings provide insights for future cancer treatments and drug discovery.
RESUMO
Cancer-associated fibroblasts (CAFs) are the most abundant stromal cells within the tumor microenvironment (TME). They extensively communicate with the other cells. Exosome-packed bioactive molecules derived from CAFs can reshape the TME by interacting with other cells and the extracellular matrix, which adds a new perspective for their clinical application in tumor targeted therapy. An in-depth understanding of the biological characteristics of CAF-derived exosomes (CDEs) is critical for depicting the detailed landscape of the TME and developing tailored therapeutic strategies for cancer treatment. In this review, we have summarized the functional roles of CAFs in the TME, particularly focusing on the extensive communication mediated by CDEs that contain biological molecules such as miRNAs, proteins, metabolites, and other components. In addition, we have also highlighted the prospects for diagnostic and therapeutic applications based on CDEs, which could guide the future development of exosome-targeted anti-tumor drugs.
Assuntos
Fibroblastos Associados a Câncer , Exossomos , MicroRNAs , Neoplasias , Humanos , Exossomos/metabolismo , Microambiente Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral , Fibroblastos/metabolismoRESUMO
BACKGROUND: The therapeutic targeting of the tumor microenvironment (TME) in colorectal cancer (CRC) has not yet been fully developed and utilized because of the complexity of the cell-cell interactions within the TME. The further exploration of these interactions among tumor-specific clusters would provide more detailed information about these communication networks with potential curative value. METHODS: Single-cell RNA sequencing, spatial transcriptomics, and bulk RNA sequencing datasets were integrated in this study to explore the biological properties of MFAP5 + fibroblasts and their interactions with tumor-infiltrating myeloid cells in colorectal cancer. Immunohistochemistry and multiplex immunohistochemistry were performed to confirm the results of these analyses. RESULTS: We profiled heterogeneous single-cell landscapes across 27,414 cells obtained from tumors and adjacent tissues. We mainly focused on the pro-tumorigenic functions of the identified MFAP5 + fibroblasts. We demonstrated that tumor-resident MFAP5 + fibroblasts and myeloid cells (particularly C1QC + macrophages) were positively correlated in both spatial transcriptomics and bulk RNA-seq public cohorts. These cells and their interactions might shape the malignant behavior of CRC. Intercellular interaction analysis suggested that MFAP5 + fibroblasts could reciprocally communicate with C1QC + macrophages and other myeloid cells to remodel unfavorable conditions via MIF/CD74, IL34/CSF1R, and other tumor-promoting signaling pathways. CONCLUSION: Our study has elucidated the underlying pro-tumor mechanisms of tumor-resident MFAP5 + fibroblasts and provided valuable targets for the disruption of their properties.
Assuntos
Neoplasias Colorretais , Peptídeos e Proteínas de Sinalização Intercelular , Humanos , Transdução de Sinais , Células Mieloides/patologia , Fibroblastos/patologia , Neoplasias Colorretais/genética , Microambiente Tumoral/genéticaRESUMO
Circular RNA (circRNA) can be used as a potential target for cancer treatment. However, the biological function and potential molecular mechanism of circ_0058123 in the development of colorectal cancer (CRC) are still unclear. The expression levels of circ_0058123, microRNA-939-5p (miR-939-5p) and Rac family small GTPase 1 (RAC1) were measured by quantitative real-time polymerase chain reaction or western blot assay. 5-Ethynyl-2'-deoxyuridine (EdU) incorporation assay, transwell assay, tube formation assay and flow cytometry apoptosis assay were conducted to assess CRC cell functions. In addition, protein expression was measured with western blot assay. Dual-luciferase reporter assays and RNA immunoprecipitation assay were conducted to confirm the relationships between miR-939-5p and circ_0058123, and miR-939-5p and RAC1. In vivo CRC tumor growth experiment also were carried out to determine circ_0058123-mediatede effects on tumor formation. Our data showed that circ_0058123 and RAC1 expression were increased, but miR-939-5p was decreased in both of CRC tissues and cell lines. Circ_0058123 depletion repressed CRC cell proliferation, migration, invasion and tube formation but promoted cell apoptosis. Down-regulation of circ_0058123 could significantly suppress the CRC progression, while the addition of miR-939-5p inhibitor could reverse this effect. Circ_0058123 directly targeted miR-939-5p, and RAC1 was a target of miR-939-5p. Furthermore, RAC1 overexpression could rescue the effect of miR-939-5p on CRC development. Lastly, silence of circ_0058123 inhibited CRC tumor growth in vivo. In conclusion, circ_0058123 could promote CRC progression through regulating the miR-939-5p/RAC1 axis and may be a valuable biomarker for early diagnosis and prognosis of CRC.
RESUMO
BACKGROUND: The tumor-promoting role of tumor microenvironment (TME) in colorectal cancer has been widely investigated in cancer biology. Cancer-associated fibroblasts (CAFs), as the main stromal component in TME, play an important role in promoting tumor progression and metastasis. Hence, we explored the crosstalk between CAFs and microenvironment in the pathogenesis of colorectal cancer in order to provide basis for precision therapy. METHODS: We integrated spatial transcriptomics (ST) and bulk-RNA sequencing datasets to explore the functions of CAFs in the microenvironment of CRC. In detail, single sample gene set enrichment analysis (ssGSEA), gene set variation analysis (GSVA), pseudotime analysis and cell proportion analysis were utilized to identify the cell types and functions of each cell cluster. Immunofluorescence and immunohistochemistry were applied to confirm the results based on bioinformatics analysis. RESULTS: We profiled the tumor heterogeneity landscape and identified two distinct types of CAFs, which myo-cancer-associated fibroblasts (mCAFs) is associated with myofibroblast-like cells and inflammatory-cancer-associated fibroblasts (iCAFs) is related to immune inflammation. When we carried out functional analysis of two types of CAFs, we uncovered an extensive crosstalk between iCAFs and stromal components in TME to promote tumor progression and metastasis. Noticeable, some anti-tumor immune cells such as NK cells, monocytes were significantly reduced in iCAFs-enriched cluster. Then, ssGSEA analysis results showed that iCAFs were related to EMT, lipid metabolism and bile acid metabolism etc. Besides, when we explored the relationship of chemotherapy and microenvironment, we detected that iCAFs influenced immunosuppressive cells and lipid metabolism reprogramming in patient who underwent chemotherapy. Additionally, we identified the clinical role of iCAFs through a public database and confirmed it were related to poor prognosis. CONCLUSIONS: In summary, we identified two types of CAFs using integrated data and explored their functional significance in TME. This in-depth understanding of CAFs in microenvironment may help us to elucidate its cancer-promoting functions and offer hints for therapeutic studies.
Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias Colorretais/patologia , Humanos , Monócitos/metabolismo , Transcriptoma/genética , Microambiente Tumoral/genéticaRESUMO
Androgen receptor (AR) can suppress hepatocellular carcinoma (HCC) invasion and metastasis at an advanced stage. Vasculogenic mimicry (VM), a new vascularization pattern by which tumour tissues nourish themselves, is correlated with tumour progression and metastasis. Here, we investigated the effect of AR on the formation of VM and its mechanism in HCC. The results suggested that AR could down-regulate circular RNA (circRNA) 7, up-regulate micro RNA (miRNA) 7-5p, and suppress the formation of VM in HCC Small hairpin circR7 (ShcircR7) could reverse the impact on VM and expression of VE-cadherin and Notch4 increased by small interfering AR (shAR) in HCC, while inhibition of miR-7-5p blocked the formation of VM and expression of VE-cadherin and Notch4 decreased by AR overexpression (oeAR) in HCC. Mechanism dissection demonstrated that AR could directly target the circR7 host gene promoter to suppress circR7, and miR-7-5p might directly target the VE-cadherin and Notch4 3'UTR to suppress their expression in HCC. In addition, knockdown of Notch4 and/or VE-cadherin revealed that shVE-cadherin or shNotch4 alone could partially reverse the formation of HCC VM, while shVE-cadherin and shNotch4 together could completely suppress the formation of HCC VM. Those results indicate that AR could suppress the formation of HCC VM by down-regulating circRNA7/miRNA7-5p/VE-Cadherin/Notch4 signals in HCC, which will help in the design of novel therapies against HCC.
Assuntos
Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Receptores Androgênicos/metabolismo , Antígenos CD/metabolismo , Biomarcadores , Caderinas/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Interferência de RNA , RNA Circular/genética , Receptor Notch4/metabolismo , Transdução de SinaisRESUMO
OBJECTIVE: Type 2 diabetes mellitus (T2DM) and the atherometabolic syndrome exhibit a deadly dyslipoproteinemia that arises in part from impaired hepatic disposal of C-TRLs (cholesterol- and triglyceride-rich remnant apoB [apolipoprotein B] lipoproteins). We previously identified syndecan-1 as a receptor for C-TRLs that directly mediates endocytosis via rafts, independent from coated pits. Caveolins and flotillins form rafts but facilitate distinct endocytotic pathways. We now investigated their participation in syndecan-1-mediated disposal of C-TRLs and their expression in T2DM liver. APPROACH AND RESULTS: In cultured liver cells and nondiabetic murine livers, we found that syndecan-1 coimmunoprecipitates with FLOT1 (flotillin-1) but not with CAV1 (caveolin-1). Binding of C-TRLs to syndecan-1 on the surface of liver cells enhanced syndecan-1/FLOT1 association. The 2 molecules then trafficked together into the lysosomes, implying limited if any recycling back to the cell surface. The interaction requires the transmembrane/cytoplasmic region of syndecan-1 and the N-terminal hydrophobic domain of FLOT1. Knockdown of FLOT1 in cultured liver cells substantially inhibited syndecan-1 endocytosis. Livers from obese, T2DM KKAy mice exhibited 60% to 70% less FLOT1 protein and mRNA than in nondiabetic KK livers. An adenoviral construct to enhance hepatic expression of wild-type FLOT1 in T2DM mice normalized plasma triglycerides, whereas a mutant FLOT1 missing its N-terminal hydrophobic domain had no effect. Moreover, the adenoviral vector for wild-type FLOT1 lowered plasma triglyceride excursions and normalized retinyl excursions in T2DM KKAy mice after a corn oil gavage, without affecting postprandial production of C-TRLs. CONCLUSIONS: FLOT1 is a novel participant in the disposal of harmful C-TRLs via syndecan-1. Low expression of FLOT1 in T2DM liver may contribute to metabolic dyslipoproteinemia.
Assuntos
Remanescentes de Quilomícrons/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Sindecana-1/metabolismo , Animais , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/terapia , Modelos Animais de Doenças , Dislipidemias/genética , Dislipidemias/terapia , Endocitose , Regulação da Expressão Gênica , Terapia Genética , Masculino , Proteínas de Membrana/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Ratos , Transdução de Sinais , Sindecana-1/genéticaRESUMO
Published data on the relationship between T309G polymorphism in the murine double minute 2 (MDM2) gene and susceptibility of digestive tract cancers (DTC) are inconclusive. Thus, the aim of this study is to determine whether MDM2 T309G polymorphism is associated with the risk of diverse DTC, including esophagus, stomach, liver, bile duct, pancreas, and colorectum cancers. Relevant studies were identified up to October 1, 2013. Crude odds ratio (OR) and 95% confidence interval (CI) were used as a measure of the strength of the association. The pooled result based on all studies showed that there was a statistically significant link between MDM2 T309G polymorphism and DTC susceptibility (T vs. G: OR = 0.82, 95%CI = 0.76-0.88). When stratified by race, significant associations were observed for all genetic models among Asians (especially in Chinese population), but not among Caucasians. Subgroup analyses according to tumor location indicated that the genetic variant was associated with esophageal (OR = 0.88, 95%CI = 0.81-0.96 for T vs. G), hepatocellular (OR = 0.69, 95%CI = 0.57-0.84 for T vs. G) and pancreatic cancer risk but not associated with cholangiocarcinoma or colorectum cancer susceptibility. Meanwhile, the G allele was also suggested to be associated with increased gastric cancer risk (OR = 0.68, 95%CI = 0.54-0.87 for TT + TG vs. GG for intestinal type of gastric cancer and OR = 0.18, 95%CI = 0.06-0.50 for TT vs. GG for Helicobacter pylori infection positive stomach cancer). Our study indicates that the MDM2 T309G polymorphism may be an ethnicity-dependent risk factor for DTC, especially for the upper gastrointestinal tract malignancies.
Assuntos
Neoplasias do Sistema Digestório/etnologia , Neoplasias do Sistema Digestório/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-mdm2/genética , Neoplasias do Sistema Digestório/etiologia , Genes p53 , Genótipo , Humanos , Fatores de RiscoRESUMO
Gastric cancer (GC) is a widespread malignancy characterized by a notably high incidence rate and an unfavorable prognosis. We conducted a meticulous analysis of GC high-throughput sequencing data downloaded from the Gene Expression Omnibus (GEO) repository to pinpoint distinctive genes associated with GC. Our investigation successfully identified three signature genes implicated in GC, with a specific focus on the barrier to autointegration factor 1 (BANF1), which exhibits elevated expression across various cancer types, including GC. Bioinformatic analysis has highlighted BANF1 as a prognostic indicator for patients with GC, with direct implications for immune cell infiltration. To gain a more comprehensive understanding of the significance of BANF1 in GC, we performed a series of in vitro experiments to confirm its high expression in GC tissues and cellular components. Intriguingly, the induction of BANF1 knockdown resulted in a marked attenuation of proliferation, migratory capacity, and invasive potential in GC cells. Moreover, our in vivo experiments using nude mouse models revealed a notable impediment in tumor growth following BANF1 knockdown. These insights underscore the feasibility of BANF1 as a novel therapeutic target for GC.
Assuntos
Proteínas de Ligação a DNA , Neoplasias Gástricas , Animais , Humanos , Camundongos , Biomarcadores , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos Nus , Prognóstico , Neoplasias Gástricas/genética , Proteínas de Ligação a DNA/genéticaRESUMO
In recent years, with the continuous in-depth exploration of the molecular mechanisms of tumorigenesis, numerous potential new targets for cancer treatment have been identified, some of which have been further developed in clinical practice and have produced positive outcomes. Notably, researchers' initial motivation for studying copper metabolism in cancer stems from the fact that copper is a necessary trace element for organisms and is closely connected to body growth and metabolism. Moreover, over the past few decades, considerable progress has been made in understanding the molecular processes and correlations between copper and cancer. Certain achievements have been made in the development and use of relevant clinical medications. The concept of "cuproptosis," a novel concept that differs from previous forms of cell death, was first proposed by a group of scientists last year, offering fresh perspectives on the targeting capabilities of copper in the treatment of cancer. In this review, we introduced the fundamental physiological functions of copper, the key components of copper metabolism, and a summary of the current research contributions on the connection between copper and cancer. In addition, the development of new copper-based nanomaterials and their associated mechanisms of action are discussed. Finally, we described how the susceptibility of cancer cells to this metallic nutrition could be leveraged to further improve the existing cancer treatment paradigm in the new setting.
Assuntos
Cobre , Neoplasias , Humanos , Cobre/metabolismo , Cobre/uso terapêutico , Neoplasias/tratamento farmacológico , CarcinogêneseRESUMO
BACKGROUND: Gastric cancer (GC) is a common cancer worldwide; however, its molecular and pathogenic mechanisms remain unclear. MicroRNAs (miRNAs), which target key genes in GC, are associated with tumor promotion or suppression. Therefore, identifying new miRNA mechanisms could improve the novel diagnostic and therapeutic strategies for patients with GC. METHODS: To explore the biological functions of miR-135b-5p in GC, bioinformatic analysis and in vitro functional assays, including colony formation, wound healing, Transwell, and EdU assays, were used to assess the proliferative, invasive, and migratory capacities of GC cells. Target genes were predicted using RNA-seq and online databases. Dual-luciferase reporter assay, fluorescence in situ hybridization and western blotting were used to confirm the regulatory relationship between miR-135b-5p and CLIP4. The role of CLIP4 in tumor progression was assessed using clinical samples and both in vitro and in vivo assays. The tumor-suppressive mechanism of CLIP4 in GC was elucidated using rescue assays. RESULTS: Our study identified that miR-135b-5p as one of the top three over-expressed miRNAs in GC tissues, with RT-qPCR confirming its upregulation. Functional analysis showed that upregulated miR-135b-5p promoted malignant phenotypes in GC cells. Mechanistic research indicated that miR-135b-5p acts as a cancer promoter by targeting CLIP4. Moreover, our study suggested that CLIP4 exerts its tumor-suppressive function by inhibiting the JAK2/STAT3 signaling pathway. CONCLUSION: This study reveals a novel mechanism by which miR-135b-5p exerts its tumor-promoting functions by targeting CLIP4. The tumor-suppressive function of CLIP4 by inactivating the JAK2/STAT3 pathway is also elucidated. Regulatory mechanism of CLIP4 by miR-135b-5p provides a promising novel therapeutic strategy for GC patients.
Assuntos
Regulação Neoplásica da Expressão Gênica , Janus Quinase 2 , MicroRNAs , Fator de Transcrição STAT3 , Transdução de Sinais , Neoplasias Gástricas , Animais , Humanos , Masculino , Camundongos , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Janus Quinase 2/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , MicroRNAs/genética , Proteínas rho de Ligação ao GTP , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismoRESUMO
Background: The preoperative identification of neoadjuvant chemotherapy (NAC) treatment responsiveness in breast cancer (BC) patients is advantageous for tailoring treatment regimens. There is a relative scarcity in the current research exploring NAC treatment responsive biomarkers using bulk sequencing data obtained from fine-needle aspiration (FNA). Materials and Methods: Limma was employed for the selection of differentially expressed genes. Additionally, WGCNA, machine learning, and Genetic Perturbation Similarity Analysis (GPSA) were utilized to identify key genes associated with NAC treatment response. ConsensusClusterPlus was employed for unsupervised clustering. Rt-qPCR and WB were conducted to assess gene expression and protein levels in clinical tissues and cell lines. The Seahorse XF96 Extracellular Flux Analyzer was utilized to evaluate Extracellular Acidification Rate (ECAR) and Oxygen Consumption Rate (OCR). The "pRRophetic" package was used for drug sensitivity prediction, while CB-Dock2 was applied for molecular docking and optimal pose presentation. Spatial transcriptomic analysis was based on the CROST database. Results: Eleven biomarkers were identified associated with NAC treatment response in BC patients, with FOXA1 identified as a pivotal hub gene among them. The expression levels of FOXA1 showed a significant positive correlation with genomic stability and a marked negative correlation with the homologous recombination deficiency (HRD) score. Downregulation of the FOXA1 gene resulted in reduced glycolysis in MCF-7 cells.Additionally, FOXA1 were found to serve as a biomarker for both NAC and PARP inhibitor treatment sensitivity in BC patients. Spatial transcriptomic analysis indicates significantly elevated infiltration of T follicular helper (T-FH) cells and mast cells surrounding tumors exhibiting high FOXA1 expression. Conclusion: In summary, our study involved the analysis of diverse sequencing datasets derived from various FNA samples to identify biomarkers sensitive to NAC, thereby offering novel insights into resources for future personalized clinical treatment strategies.
RESUMO
This study explored the connection between KDM6A expression and patient prognosis and the mechanism of KDM6A's role in developing GC (GC). From the immunohistochemical Analysis of 107 GC patients' tumors, we discovered that patients with reduced KDM6A expression had a shorter survival time. There was a correlation between KDM6A expression and the degree of differentiation of tumor tissue, T stage, N stage, and TNM stage. KDM6A gene expression was positively connected with the expression level of E-cadherin and negatively connected with the expression level of N-cadherin and vimentin in vitro tests. KDM6A gene suppression prevented GC cell proliferation, migration, and invasion, whereas high KDM6A gene expression promoted these processes. Second, low expression of KDM6A down-regulates GSK3ß, p-GSK3ß, up-regulates C-Myc, CyclinD1, and promotes ß-catenin protein expression in the nucleus, while the high expression does the opposite. Then, we used ICG001 to block the Wnt/ß-catenin signal transduction pathway, and the results revealed that ICG001 could reduce the promoting effect of low KDM6A expression on aggressiveness and EMT in GC cells. KDM6A down-regulation stimulates the proliferation of GC cells, while ICG001 reverses this action in vivo tests. Patients whose KDM6A expression was found to be low had a poor prognosis, as this study found. The EMT is inhibited by regulating theWnt/ß-catenin signaling by KDM6A, which reduces GC cell proliferation, migration, and invasion. KDM6A may be a viable target for GC in clinical therapy.
Assuntos
Neoplasias Gástricas , beta Catenina , Humanos , beta Catenina/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Neoplasias Gástricas/patologia , Via de Sinalização Wnt/genéticaRESUMO
BACKGROUND: Although the location of proximal cancer of the remnant stomach is the same as that of primary proximal cancer of the stomach, its clinical characteristics and prognosis are still controversial. AIM: To evaluate the clinicopathological features and prognosis factors of gastric stump cancer (GSC) and primary proximal gastric cancer (PGC). METHODS: From January, 2005 to December, 2016, 178 patients with GSC and 957 cases with PGC who received surgical treatment were enrolled. Patients in both groups underwent 1:1 propensity score matching analysis, and both clinical and pathological data were systematically collected for statistical purposes. Quality of life was evaluated by the C30 and STO22 scale between GSC-malignant (GSC following gastric cancer) and GSC-benign (GSC following benign lesions of the stomach). RESULTS: One hundred and fifty-two pairs were successfully matched after propensity score matching analysis. Of the 15 demographic and pathological variables collected, the analysis further revealed that the number of lymph nodes and positive lymph nodes were different prognostic and clinicopathological factors between PGC and GSC. Univariate and multivariate analyses showed that gender, differentiation degree and tumor-node-metastasis stage were independent risk factors for patients with GSC. Gender, vascular invasion, differentiation degree, depth of infiltration, positive lymph nodes, and tumor-node-metastasis stage were independent risk factors for patients with PGC. The 5-year overall survival and cancer-specific survival of patients with GSC were significantly lower than those in the PGC group, the scores for overall quality of life in the GSC-malignant group were lower than the GSC-benign, and the differences were statistically significant. CONCLUSION: The differences in clinicopathological characteristics between GSC and PGC were clarified, and PGC had a better prognosis than GSC.
RESUMO
Background: Gastric cancer (GC) is the fifth most common malignancy and the third leading cause of tumor-related deaths globally. Herein, we attempted to build a novel immune-related gene (IRG) signature that could predict the prognosis and immunotherapeutic efficiency for GC patients. Methods: The mRNA transcription data and corresponding clinical data of GC were downloaded from The Cancer Genome Atlas (TCGA) database as the training group and the GSE84437 data set as the testing cohort, followed by acquisition of IRGs from the InnateDB resource and ImmPort database. Using the univariate Cox regression analysis, an IRG signature was developed. Several immunogenomic analyses were performed to illustrate the associations between the immune risk score and tumor mutational burden, immune cell infiltrations, function of immune infiltration, clinical characteristics, immune subtype, and immunotherapeutic response. Results: The analysis of 343 GC samples and 30 normal samples from the TCGA database gave rise to 8,713 differentially expressed genes (DEGs) and 513 differentially expressed immune-related genes (DEIRGs) were extracted. The novel IRG signature contained eight DEIRGs (FABP4, PI15, RNASE2, CGB5, INHBE, RLN2, DUSP1, and CD36) and was found to serve as an independent predictive and prognostic factor for GC. Then, the GC patients were separated into the high- and low-risk groups based on the median risk score, wherein the low-risk group presented a better prognosis and was more sensitive to immunotherapy than did the high-risk group. According to the time-dependent ROC curves and AUCs, the immunotherapeutic value of the signature was better than the Tumor Immune Dysfunction and Exclusion (TIDE) and T-cell inflammatory signature (TIS) scores. In addition, the AUCs of the risk score for predicting 1-, 2-, and 3-year OS were 0.675, 0.682, and 0.710, respectively, which indicated that the signature had great predictive power. Conclusion: This study presents a novel IRG signature based on the tumor immune microenvironment, which could improve the prediction of the prognosis and immunotherapeutic efficiency for GC patients. The powerful signature may serve as novel biomarkers and provide therapeutic targets for precision oncology in clinical practice.
RESUMO
Gastric cancer is the fifth most common malignancy and the third leading cause of cancer-related mortality worldwide. Immunotherapy offers promising new treatment options for gastric cancer patients; however, it is only effective in a limited fraction of patients. In this study, we evaluated the composition of 22 tumor-infiltrating lymphocytes (TILs) in TCGA Stomach Adenocarcinoma (STAD) using deconvolution-based method by analyzing the publicly available bulk tumor RNA-seq data. The patients were classified into high-TIL and low-TIL subtypes based on their immune cell profiles and prognosis outputs. The differentially expressed genes (DEGs) between the two subtypes were identified, and GO/KEGG analysis showed that broad immune genes, such as PD-L1 and PD-1, were highly expressed in the high-TIL subtype. A comprehensive protein-protein interaction (PPI) network centered on DEGs was built, and 16 hub genes of the network were further identified. Based on the hub genes, an elastic model with 11 gene signatures (NKG7, GZMB, IL2RB, CCL5, CD8A, IDO1, MYH1, GNLY, CXCL11, GBP5 and PRF1) was developed to predict the high-TIL subtype. In summary, our findings showed that the compositions of TILs within the tumor immune microenvironment of stomach cancer patients are highly heterogeneous, and the profiles of TILs have the potential to be predictive markers of patients' responses and overall survival outcomes.
Assuntos
Adenocarcinoma , Neoplasias Gástricas , Adenocarcinoma/genética , Humanos , Linfócitos do Interstício Tumoral/patologia , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Microambiente Tumoral/genéticaRESUMO
Appendiceal mucocele is a rare disease. Due to the lack of specific clinical symptoms, and the high misdiagnosis rate before operation, in the present study, the clinical data were assessed to determine a potential basis for the diagnosis and treatment of appendiceal mucocele. The clinical data of 3,071 patients with appendicitis admitted between January 2014 and July 2021, including 9 patients with appendiceal mucoceles were retrospectively analyzed. The data were retrieved from the hospital records and included the patients' age, sex, leukocyte counts (measured in the peripheral venous blood sample), the surgical methods, the pathological results and the postoperative follow-up information. Among the 3,071 patients with appendicitis, 9 cases were appendiceal mucocele. These 9 were treated by laparoscopic surgery in 6 cases (2 laparoscopic appendectomy, 2 laparoscopic partial cecectomy plus appendectomy, and 2 laparoscopic right hemicolectomy) and laparotomy in 3 cases (partial cecectomy plus appendectomy). Pathological examination was performed on the surgically resected specimens of all patients. The results showed that 7 cases were appendiceal mucoceles, and 2 cases were low-grade appendiceal mucoceles. During the follow-up after surgery, one patient with exploratory laparotomy plus partial cecectomy and appendectomy was pathologically diagnosed with low-grade appendiceal myxoma. The patient developed peritoneal implants appeared 2 years later, and the remaining patients are still alive, without any postoperative complications or obvious signs of recurrence. Appendiceal mucocele is a disease that usually causes clinical manifestations of acute appendicitis. Ultrasound and CT scans can be used for preoperative diagnosis. The surgical treatment options for mucoceles are open or laparoscopic appendectomy, cecectomy, and right hemicolectomy. Although the incidence of appendiceal mucocele is low, special attention should be paid to surgery due to its predisposition to peritoneal implantation and metastasis. Laparoscopic appendectomy with partial cecectomy is not a difficult procedure and is not likely to cause abdominal implantation metastasis, thus it should be the preferred surgical method. When conditions permit, intraoperative rapid cryotherapy can quickly identify the occurrence of malignant tumors.
RESUMO
Oxidative stress and ferroptosis exhibit crosstalk in many types of human diseases, including malignant tumors. We aimed to develop an oxidative stress- and ferroptosis-related gene (OFRG) prognostic signature to predict the prognosis and therapeutic response in patients with colorectal cancer (CRC). Thirty-four insertion genes between oxidative stress-related genes and ferroptosis-related genes were identified as OFRGs. We then performed bioinformatics analysis of the expression profiles of 34 OFRGs and clinical information of patients obtained from multiple datasets. Patients with CRC were divided into three OFRG clusters, and differentially expressed genes (DEGs) between clusters were identified. OFRG clusters correlated with patient survival and immune cell infiltration. Prognosis-related DEGs in three clusters were used to calculate the risk score, and a prognostic signature was constructed according to the risk score. In this study, patients in the low-risk group had better prognosis, higher immune cell infiltration levels, and better responses to fluorouracil-based chemotherapy and immune checkpoint blockade therapy than high-risk patients; these results were successfully validated with multiple independent datasets. Thus, low-risk CRC could be defined as hot tumors and high-risk CRC could be defined as cold tumors. To further identify potential biomarkers for CRC, the expression levels of five signature genes in CRC and adjacent normal tissues were further verified via an in vitro experiment. In conclusion, we identified 34 OFRGs and constructed an OFRG-related prognostic signature, which showed excellent performance in predicting survival and therapeutic responses for patients with CRC. This could help to distinguish cold and hot tumors in CRC, and the results might be helpful for precise treatment protocols in clinical practice.
Assuntos
Neoplasias Colorretais , Ferroptose , Humanos , Prognóstico , Ferroptose/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Estresse Oxidativo/genéticaRESUMO
OBJECTIVES: Free portal pressure measurement is a reliable method for assessment of portal pressure in patients with cirrhosis. Intrahepatic circulatory time analysis of a sonographic contrast agent can assess liver fibrosis and its severity. The purposes of this pilot study were to assess the correlation between the intrahepatic circulatory time and free portal pressure and to assess whether intrahepatic circulatory time analysis can be used to predict portal venous pressure severity. METHODS: The intrahepatic circulatory time and free portal pressure were measured in 31 patients with hepatitis B virus-related liver disease. Pearson correlation analysis was used to assess the correlation between the intrahepatic circulatory time and free portal pressure. RESULTS: The hepatic vein-hepatic artery interval times were significantly shorter in the portal hypertension group than the non-portal hypertension group (mean ± SD, 8.26 ± 1.94 and 13.83 ± 1.17 seconds, respectively; P < .001). The portal vein-hepatic artery interval times were significantly longer in the portal hypertension group than the nonportal hypertension group (13.13 ± 2.25 and 7.25 ± 1.81 seconds; P < .001). Considering the whole patient population, there were statistically significant correlations between free portal pressure and the hepatic vein-hepatic artery interval time (r = -0.900; P < .001) and portal vein-hepatic artery interval time (r = 0.808; P < .001). In patients with portal hypertension, there was a statistically significant correlation between free portal pressure and the hepatic vein-hepatic artery interval time (r = -0.804; P = .009) and a weak correlation between free portal pressure and the portal vein-hepatic artery interval time (r = 0.506; P = .036). CONCLUSIONS: Intrahepatic circulatory time measurement is correlated with free portal pressure and has the potential capability to evaluate portal pressure noninvasively in patients with hepatitis B virus-related liver disease.