Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Biometals ; 37(2): 421-432, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37991682

RESUMO

Copper (Cu) is an essential trace element that plays a crucial role in numerous physiopathological processes related to human and animal health. In the poultry industry, Cu is used to promote growth as a feed supplement, but excessive use can lead to toxicity on animals. Cytochrome P450 enzymes (CYP450s) are a superfamily of proteins that require heme as a cofactor and are essential for the metabolism of xenobiotic compounds. The purpose of this study was to explore the influence of exposure to Cu on CYP450s activity and apoptosis in the jejunum of broilers. Hence, we first simulated the Cu exposure model by feeding chickens diets containing different amounts of Cu. In the present study, histopathological observations have revealed morphological damage to the jejunum. The expression levels of genes and proteins of intestinal barrier markers were prominently downregulated. While the mRNA expression level of the gene associated with CYP450s was significantly increased. Additionally, apoptosis-related genes and proteins (Bak1, Bax, Caspase-9, Caspase-3, and CytC) were also significantly augmented by excessive Cu, while simultaneously decreasing the expression of Bcl-2. It can be concluded that long-term Cu exposure affects CYP450s activity, disrupts intestinal barrier function, and causes apoptosis in broilers that ultimately leads to jejunum damage.


Assuntos
Galinhas , Oligoelementos , Humanos , Animais , Galinhas/metabolismo , Jejuno , Apoptose , Cobre/toxicidade , Cobre/metabolismo , Oligoelementos/metabolismo , Dieta
2.
Pestic Biochem Physiol ; 201: 105904, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685226

RESUMO

Arsenic (As) and polystyrene nanoplastics (PSNPs) co-exposure induced biotoxicity and ecological risks have attracted wide attention. However, the combined effects of As and PSNPs on the kidney and their underlying mechanisms of toxicities remain to be explored. Here, we investigated the effects of As and PSNPs co-exposure on structure and function in mice kidney, and further explored the possible mechanisms. In this study, we identified that co-exposure to As and PSNPs exhibited conspicuous renal structural damage and pathological changes, accompanied by renal tissue fibrosis (increased protein expression of Collagen I and α-SMA and deposition of collagen fibers), whereas alone exposure to As or PSNPs does not exhibit nephrotoxicity. Subsequently, our results further showed that combined action of As and PSNPs induced mitochondrial oxidative damage and impaired mitochondrial dynamic balance. Furthermore, co-treatment with As and PSNPs activated NCOA4-mediated ferritinophagy and ferroptosis in mice kidney and TCMK-1 cells, which was confirmed by the changes in the expression of ferritinophagy and ferroptosis related indicators (NCOA4, LC3, ATG5, ATG7, FTH1, FTL, GPX4, SLC7A11, FSP1, ACSL4 and PTGS2). Meaningfully, pretreatment with the mtROS-targeted scavenger Mito-TEMPO significantly attenuated As and PSNPs co-exposure induced mitochondrial damage, ferritinophagy and ferroptosis. In conclusion, these findings demonstrated that mtROS-dependent ferritinophagy and ferroptosis are important factors in As and PSNPs co-exposure induced kidney injury and fibrosis. This study provides a new insight into the study of combined toxicity of nanoplastics and heavy metal pollutants.


Assuntos
Arsênio , Ferroptose , Rim , Mitocôndrias , Poliestirenos , Animais , Ferroptose/efeitos dos fármacos , Poliestirenos/toxicidade , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Arsênio/toxicidade , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Homeostase/efeitos dos fármacos , Ferritinas/metabolismo , Nanopartículas/toxicidade , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
3.
Environ Toxicol ; 39(1): 264-276, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37705229

RESUMO

Co-existing of polystyrene-nano plastics (PSNPs) and arsenic (As) in the environment caused a horrendous risk to human health. However, the potential mechanism of PSNPs and As combination induced testicular toxicity in mammals has not been elucidated. Therefore, we first explore the testicular toxicity and the potential mechanism in male Kunming mice exposed to As or/and PSNPs. Results revealed that compared to the As or PSNPs group, the combined group showed more significant testicular toxicity. Specifically, As and PSNPs combination induced irregular spermatozoa array and blood-testis barrier disruption. Simultaneously, As and PSNPs co-exposure also exacerbated oxidative stress, including increasing the MDA content, and down-regulating expression of Nrf-2, HO-1, SOD-1, and Trx. PSNPs and As combination also triggered testicular apoptosis, containing changes in apoptotic factors (P53, Bax, Bcl-2, Cytc, Caspase-8, Caspase-9, and Caspase-3). Furthermore, co-exposed to As and PSNPs aggravated inflammatory damage characterized by targeted phosphorylation of NF-κB and degradation of I-κB. In summary, our results strongly confirmed As + PSNPs co-exposure induced the synergistic toxicity of testis through excessive oxidative stress, apoptosis, and inflammation, which could offer a new sight into the mechanism of environmental pollutants co-exposure induced male reproductive toxicity.


Assuntos
Arsênio , Testículo , Camundongos , Humanos , Masculino , Animais , Testículo/metabolismo , Poliestirenos/toxicidade , Arsênio/toxicidade , Arsênio/metabolismo , Microplásticos , Plásticos/metabolismo , Estresse Oxidativo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Apoptose , Mamíferos/metabolismo
4.
Pestic Biochem Physiol ; 197: 105649, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072524

RESUMO

Thiram is a plant fungicide, its excessive use has exceeded the required environmental standards. It causes tibial dyschondroplasia (TD) in broilers which is a common metabolic disease that affects the growth plate of tibia bone. It has been studied that many microRNAs (miRNAs) are involved in the differentiation of chondrocytes however, their specific roles and mechanisms have not been fully investigated. The selected features of tibial chondrocytes of broilers were studied in this experiment which included the expression of miR-181b-1-3p and the genes related to WIF1/Wnt/ß-catenin pathway in chondrocytes through qRT-PCR, western blot and immunofluorescence. The correlation between miR-181b-1-3p and WIF1 was determined by dual luciferase reporter gene assay whereas, the role of miR-181b-1-3p and WIF1/Wnt/ß-catenin in chondrocyte differentiation was determined by mimics and inhibitor transfection experiments. Results revealed that thiram exposure resulted in decreased expression of miR-181b-1-3p and increased expression of WIF1 in chondrocytes. A negative correlation was also observed between miR-181b-1-3p and WIF1. After overexpression of miR-181b-1-3p, the expression of ACAN, ß-catenin and Col2a1 increased but the expression of GSK-3ß decreased. It was observed that inhibition of WIF1 increased the expression of ALP, ß-catenin, Col2a1 and ACAN but decreased the expression of GSK-3ß. It is concluded that miR-181b-1-3p can reverse the inhibitory effect of thiram on cartilage proliferation and differentiation by inhibiting WIF1 expression and activating Wnt/ß-catenin signaling pathway. This study provides a new molecular target for the early diagnosis and possible treatment of TD in broilers.


Assuntos
MicroRNAs , Osteocondrodisplasias , Animais , Condrócitos/metabolismo , Galinhas/genética , Galinhas/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Osteocondrodisplasias/genética , Osteocondrodisplasias/veterinária , Osteocondrodisplasias/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/farmacologia , Tiram , Tíbia/metabolismo , MicroRNAs/genética , Proliferação de Células/genética
5.
Environ Toxicol ; 38(2): 392-402, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36350156

RESUMO

A large amount of copper (Cu) used in production activities can lead to the enrichment of Cu in the environment, which can cause toxicity to animals. However, the toxicity mechanism of Cu on the cerebrum is still uncertain. Hence, a total of 240 chickens were separated into four groups in this study to reveal the potential connection between mitophagy and endoplasmic reticulum (ER) stress-mediated apoptosis in the chicken cerebrum in the case of excess Cu exposure. The cu exposure situation was simulated by diets containing various levels of copper (11 mg/kg, control group; 110 mg/kg, group I; 220 mg/kg, group II and 330 mg/kg, group III) for 49 days. The results of histology showed that vacuolar degeneration was observed in the treated groups, and the mitochondria swell and autophagosomes formation were found under excess Cu treatment. Additionally, the expression of mitophagy (PINK1, Parkin, LC3I, LC3II and p62) and ER stress (GRP78, PERK, ATF6, IRE1α, XBP1, CHOP, and JNK) indexes were significantly upregulated under excess Cu exposure. Furthermore, the mRNA and protein expression of Bcl-2 were decreased, while Bak1, Bax, Caspase12, and Caspase3 were increased compared to the control group. In summary, this study demonstrated that an overdose of Cu could induce mitophagy and ER stress-mediated apoptosis in the chicken cerebrum. These findings revealed an important potential connection between Cu toxicity and cerebrum damage, which provided a new insight into Cu neurotoxicity.


Assuntos
Cérebro , Cobre , Estresse do Retículo Endoplasmático , Mitofagia , Animais , Apoptose , Galinhas , Cobre/toxicidade , Endorribonucleases , Proteínas Serina-Treonina Quinases
6.
Toxicol Appl Pharmacol ; 434: 115820, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896432

RESUMO

Arsenic is a well-known environmental pollutant due to its toxicity, which can do harm to animals and human. Curcumin is a polyphenolic compound derived from turmeric, commonly accepted to have antioxidant properties. However, whether curcumin can ameliorate the damage caused by arsenic trioxide (ATO) in duck skeletal muscle remains largely unknown. Therefore, the present study aims to investigate the potential molecular mechanism of curcumin against ATO-induced skeletal muscle injury. The results showed that treating with curcumin could attenuate body weight loss induced by ATO and reduced arsenic content accumulation in the skeletal muscle of duck. Curcumin was also able to alleviated the oxidative stress triggered by ATO, which was manifested by the increase of T-AOC and SOD, and MDA decrease. Moreover, we observed that curcumin could ease mitochondrial damage and vacuolate degeneration of nucleus. Our further investigation found that ATO disrupted normal mitochondrial fission/fusion (Drp1, OPA1, Mfn1/2) and restrained mitochondrial biogenesis (PGC-1α, Nrf1/2, TFAM), while curcumin could promote mitochondrial fusion and activated PGC-1α pathway. Furthermore, curcumin was found that it could not only reduce the mRNA and protein levels of mitophagy (PINK1, Parkin, LC3, p62) and pro-apoptotic genes (p53, Bax, Caspase-3, Cytc), but also increased the levels of anti-apoptotic genes (Bcl-2). In conclusion, curcumin was able to alleviate ATO-induced skeletal muscle damage by improving mitophagy and preserving mitochondrial function, which can serve as a novel strategy to take precautions against ATO toxicity.


Assuntos
Arsênio/toxicidade , Curcumina/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Doenças Musculares/induzido quimicamente , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Biologia Computacional , Patos , Poluentes Ambientais/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ubiquitina-Proteína Ligases/genética
7.
Ecotoxicol Environ Saf ; 230: 113117, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34959015

RESUMO

Arsenic is a dangerous metalloid-material which is known to cause liver injury in many animals and humans. However, little is known about the underlying mechanism of arsenic-induced hepatotoxicity in poultry. This study was executed to systematically investigate the potential role of mitochondrial biogenesis, mitophagy and apoptosis in duck hepatotoxicity caused by arsenic. Results showed that the body weight and liver coefficient of duck had distinct changed after arsenic-exposure, and the arsenic content in serum and liver also increased significantly in a dose-dependent manner. Meanwhile, histopathological examination and metabolomics results showed that arsenic-exposure caused severe steatosis and metabolism disorder in liver tissues. Furthermore, arsenic-exposure significantly inhibited AMPK/PGC-1α-mediated mitochondrial biogenesis, determined by the ultrastructure observation and down-regulation of p-AMPKα/AMPKα, PGC-1α, NRF1, NRF2, TFAM, TFB1M, TFB2M and COX-Ⅳ expression levels. Besides, arsenic-treatment obviously increased the levels of mitophagy (PINK1, Parkin, LC3, P62) and pro-apoptotic (Caspase-3, Caspase-9, Cleaved Caspase-3, Cytc, Bax, P53) indexes, and simultaneously resulted in reductions in anti-apoptosis index (Bcl-2). Overall, our findings provided evidences that arsenic-induced duck hepatotoxicity may be caused by a combination of impaired mitochondrial biosynthesis, mitophagy, and mitochondrial-dependent apoptosis. To our knowledge, this is the first report to systematically investigate the potential mechanism of arsenic-induced hepatotoxicity in poultry.

8.
Ecotoxicol Environ Saf ; 228: 112965, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34775344

RESUMO

Arsenic trioxide (ATO) has confirmed as a global pollutant, the toxic effect of which was not fully understood and lack effective therapies to against its associated toxicities. Curcumin (Cur) is a beneficial natural pigment for its antioxidant and anti-inflammatory properties. The purpose of this paper was to illustrate the antagonism of Cur against ATO-induced neurotoxicity. A total of 40 ducks were divided randomly into 4 groups and conducted via bite and sup for 28 days: control group (Control); 2 mg/kg ATO group (Low ATO); 4 mg/kg ATO group (Middle ATO); 8 mg/kg ATO group (High ATO); 400 mg/kg Cur group + 8 mg/kg ATO (Cur+ATO). The results showed that ATO exposure can hinder the duck growth and arsenic element accumulation rate increased in a dose-dependent manner. We observed neuronal shrinkage and vacuolize of HE staining in the ATO-treated group. In addition, SOD activity and T-AOC level reduced while MDA content increased in the ATO-exposed group. ATO exposure can decrease the expression of anti-oxidation related mRNA and proteins (Nrf2, SOD-1, GPX-1, CAT, Trx and HO-1) and anti-inflammatory makers (IL-4, IL-10), increased the expression of Keap1, NF-κB and pro-inflammatory makers (TNF-α, IL-1ß, IL-18, IL-2, IL-6, INOS and COX-2). ATO treated might cause blood-brain barrier (BBB) damage through degradation of the tight junction proteins (TJs) occludin and ZO-1. Importantly, the experimental results also showed that Cur can alleviate oxidative stress, inflammatory response and BBB injury caused by ATO exposure through Nrf2 and NF-κB signaling pathway. The results suggested Cur exerted as a food additive and provided novel potential benefits of ATO toxicology in inflammation of the brain.

9.
Ecotoxicol Environ Saf ; 221: 112442, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34166936

RESUMO

Arsenic (As) and antimony (Sb) are commonly accumulated environmental pollutants that often coexist in nature and cause serious widespread biological toxicity. To investigate the nephrotoxicity induced by As and Sb in detail, we explored the mechanism by which As and Sb cotreatment induced autophagy and pyroptosis in vivo and in vitro. In this study, mice were treated with 4 mg/kg arsenic trioxide (ATO) or/and 15 mg/kg antimony trichloride (SbCl3) by intragastric intubation for 60 days. TCMK-1 cells were treated with ATO (12.5 µM), SbCl3 (25 µM) or a combination of As and Sb for 24 h. The results of the in vivo experiment demonstrated that As or/and Sb exposure could induce histopathological changes in the kidneys, and increase the levels of biochemical indicators of nephrotoxicity. In addition, As and Sb can co-induce oxidative stress, which further activate autophagy and pyroptosis. In an in vitro experiment, As and/or Sb coexposure increased ROS generation and decreased MMP. Moreover, the results of related molecular experiments further confirmed that As and Sb coactivated autophagy and pyroptosis. In conclusion, our results indicated that As and Sb co-exposure could cause autophagy and pyroptosis via the ROS pathway, and these two metals might have a synergistic effect on nephrotoxicity.


Assuntos
Antimônio/toxicidade , Trióxido de Arsênio/toxicidade , Cloretos/toxicidade , Rim/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Poluentes Ambientais/toxicidade , Rim/fisiopatologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
10.
Ecotoxicol Environ Saf ; 220: 112395, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34102394

RESUMO

Copper (Cu), one of the heavy metals, is far beyond the carrying capacity of the environment with Cu mining, industrial wastewater discharging and the use of Cu-containing pesticides. Intaking excess Cu can cause toxic effects on liver, kidney, heart, but few studies report Cu toxicity on brain tissue. It is noteworthy that most toxicity tests are based on rodent models, but large mammals chosen as animal models has no reported. To explore the relationship of the Cu toxicity and mitochondria-mediated apoptosis on hypothalamus in pigs, the content of Cu, histomorphology, mitochondrial related indicators, apoptosis, and AMPK-mTOR signaling pathway were detected. Results showed that Cu could accumulate in hypothalamus and lead to mitochondrial dysfunction, evidenced by the decrease of ATP production, activities of respiratory chain complex I-IV, and mitochondrial respiratory function in Cu-treated groups. Additionally, the genes and proteins expression of Bax, Caspase-3, Cytc in treatment group were higher than control group. Furthermore, the protein level of p-AMPK was enhanced significantly and p-mTOR was declined, which manifested that AMPK-mTOR signaling pathway was activated in Cu-treated groups. In conclusion, this study illuminated that the accumulation of Cu could cause mitochondrial dysfunction, induce mitochondria-mediated apoptosis and activate AMPK-mTOR pathway in hypothalamus.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cobre/toxicidade , Hipotálamo/efeitos dos fármacos , Metais Pesados/toxicidade , Mitocôndrias/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose , Caspase 3/metabolismo , Cobre/metabolismo , Citocromos c/metabolismo , Exposição Ambiental , Hipotálamo/metabolismo , Metais Pesados/metabolismo , Mitocôndrias/metabolismo , Modelos Animais , Transdução de Sinais , Suínos , Proteína X Associada a bcl-2/metabolismo
11.
Ecotoxicol Environ Saf ; 219: 112350, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34022626

RESUMO

Arsenic trioxide (ATO) has been known as common environmental pollution, and is deemed to a threat to global public health. Curcumin (Cur) is a phytoconstituent, which has been demonstrated to have antioxidant effects. In the current experiment, we investigated the efficacy of Cur against ATO-induced kidney injury and explored the potential molecular mechanisms that have not yet been fully elucidated in ducks. The results showed that treatment with Cur attenuated ATO-induced body weight loss, reduced the content of ATO in the kidney, and improved ATO-induced kidney pathological damage. Cur also remarkably alleviated the ascent of ATO-induced MDA level and activated the Nrf2 pathway. Using the TEM, we found Cur relieved mitochondrial swelling, autolysosomes generating and nuclear damage. Simultaneously, Cur was found that it not only significantly reduced autophagy-related mRNA and protein levels (mTOR, LC3-Ⅰ, LC3-Ⅱ, Atg-5, Beclin1, Pink1 and Parkin) and but also decreased apoptosis-related mRNA and protein expression levels (cleaved caspase-3, Cytc, p53 and Bax). Furthermore, through nontargeted metabolomics analysis, we observed that lipid metabolism balance was disordered by ATO exposure, while Cur administration alleviated the disturbance of lipid metabolism. These results showed ATO could induce autophagy and apoptosis by overproducing ROS in the kidney of ducks, and Cur might relieve excessive autophagy, apoptosis and disturbance of lipid metabolism by regulating oxidative stress. Collectively, our findings explicate the potential therapeutic value of Cur as a new strategy to a variety of disorders caused by ATO exposure.


Assuntos
Trióxido de Arsênio/toxicidade , Curcumina/farmacologia , Substâncias Protetoras/farmacologia , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Patos/metabolismo , Dislipidemias/metabolismo , Rim/efeitos dos fármacos , Nefropatias/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Serina-Treonina Quinases TOR
12.
Ecotoxicol Environ Saf ; 213: 112040, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33610943

RESUMO

Among different synthetic compounds copper (Cu) is persistently and frequently used as growth promoter, antibacterial, antifungal and antiparasitic agent and has become common environmental pollutant. Therefore, this study explores the cardio-toxic effects of control group (10 mg/kg bw Cu) and treatment group (125 and 250 mg/kg bw Cu), and it association with process of autophagy and metabolomics in myocardium of pigs kept in three different experimental treatments for a period of 80 days. The results of serum biochemical parameters showed a significantly increase in creatinine kinase (CK), creatine kinase-MB (CK-MB), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C) and aspartate aminotransferase (AST) in pigs exposed to 125 mg/kg bw and 250 mg/kg bw Cu. Meanwhile, the severe structural abnormalities in cardiomyocytes were found when exposed to 250 mg/kg Cu at day 80. In addition, the mRNA and proteins (Beclin1, ATG5 and LC3II) expression levels were significantly increased and p62 was significantly decreased in cardiomyocytes exposed to 250 mg/kg Cu at day 80 of the trial. Further, UPLC-QTOF/MS technique showed that 7 metabolites were up-regulated and 37 metabolites were down-regulated in cardiomyocytes after 250 mg/kg Cu treatment, with a principal impact on the metabolic pathways including glycerophospholipid metabolism, one carbon pool by folate, fatty acid elongation and fatty acid degradation, which were related to autophagy. Overall, our study identified the autophagy processes and metabolites in metabolic pathways in Cu-induced myocardium injury, which provided useful evidence of myocardium toxicity caused by Cu exposure via metabolomics and multiple bioanalytic methods.


Assuntos
Autofagia/efeitos dos fármacos , Cobre/toxicidade , Poluentes Ambientais/toxicidade , Coração/efeitos dos fármacos , Animais , Poluentes Ambientais/metabolismo , Coração/fisiologia , Redes e Vias Metabólicas , Metabolômica , Miocárdio/metabolismo , Suínos
13.
Ecotoxicol Environ Saf ; 217: 112225, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33864983

RESUMO

Long-term exposure to excessive fluoride causes chronic damage in the body tissues and could lead to skeletal and dental fluorosis. Cartilage damage caused by excessive fluoride intake has gained wide attention, but how fluoride accumulation blocks the development of chondrocytes is still unclear. Here, we report a negative correlation between the length and growth plate width after NaF treatments via apoptosis and autophagy, with shrinkage of cells, nuclear retraction, dissolution of chondrocytes. Whereas, fluoride exposure had no significant effect on the number and distribution of the osteoclasts which were well aligned. More importantly, fluoride exposure induced apoptosis of tibial bone through CytC/Bcl-2/P53 pathways via targeting Caspase3, Caspase9, Bak1, and Bax expressions. Meanwhile, the Beclin1, mTOR, Pakin, Pink, and p62 were elevated in NaF treatment group, which indicated that long-term excessive fluoride triggered the autophagy in the tibial bone and produced the chondrocyte injury. Altogether, fluoride exposure induced the chondrocyte injury by regulating the autophagy and apoptosis in the tibial bone of ducks, which demonstrates that fluoride exposure is a risk factor for cartilage development. These findings revealed the essential role of CytC/Bcl-2/P53 pathways in long-term exposure to fluoride pollution and block the development of chondrocytes in ducks, and CytC/Bcl-2/P53 can be targeted to prevent fluoride induced chondrocyte injury.


Assuntos
Condrócitos/fisiologia , Patos/fisiologia , Fluoretos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Condrócitos/efeitos dos fármacos , Condrogênese , Fluoretos/metabolismo , Lâmina de Crescimento
14.
Ecotoxicol Environ Saf ; 220: 112394, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34091186

RESUMO

Arsenic (As) and antimony (Sb) are known as an environmental contaminant with cardiotoxicity properties. The endoplasmic reticulum (ER) is the largest calcium reservoir in the cell, and its calcium homeostasis disorder plays a vital role in endoplasmic reticulum stress (ERS) and apoptosis. The objective of this study was to investigate whether As and Sb induced apoptosis via endoplasmic reticulum stress (ERS) linked to calcium homeostasis disturbance. In this study, thirty-two adult mice were gavage-fed daily with As2O3 (4 mg/kg), SbCl3 (15 mg/kg) and co-treat with SbCl3 (15 mg/kg) and As2O3 (4 mg/kg) daily for 60 days. It was observed that As or/and Sb caused histopathological lesions and ER expansion of the heart. Meanwhile, the gene expression of ER Ca2+ release channels (RyR2 and IP3R) and calmodulin-dependent protein kinase II (CaMKII) increased while the levels of mRNA and protein of ER Ca2+ uptake channel (SERCA2) downregulated significantly compared to the controls. Then, As or/and Sb induced ERS and triggered the ER apoptotic pathway by activating unfolded protein response (UPR)-associated genes ((PERK, ATF6, IRE1, XBP1, JNK, GRP78), and apoptosis-related genes (Caspase12, Caspase3, p53, CHOP). Above indicators in As + Sb group became more severe than that of As group and Sb group. Overall, our results proved that the cardiotoxicity caused by As or/and Sb might be concerning disturbing calcium homeostasis, which induced apoptosis through the ERS pathway.


Assuntos
Antimônio/toxicidade , Arsênio/toxicidade , Cálcio/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Coração/efeitos dos fármacos , Animais , Antimônio/metabolismo , Apoptose , Arsênio/metabolismo , Canais de Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiotoxicidade/metabolismo , Cardiotoxinas , Caspase 3/metabolismo , Morte Celular , Regulação para Baixo , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Poluentes Ambientais/toxicidade , Homeostase/efeitos dos fármacos , Masculino , Metais Pesados/toxicidade , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Resposta a Proteínas não Dobradas
15.
Ecotoxicol Environ Saf ; 223: 112587, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352579

RESUMO

Cu is a metallic element that widely spread over in the environment, which have raised wide concerns about the potential toxic effects and public health threat. The objective of this study aimed to investigate the impression of copper (Cu)-triggered toxicity on mitochondrial dynamic, oxidative stress, and unfolded protein response (UPRmt) in fundic gland of pigs. Weaned pigs were randomly distributed into three groups, fed with different Cu of 10 mg/kg (control group), 125 mg/kg (group I), and 250 mg/kg (group Ⅱ). The trial persisted for 80 days and the fundic gland tissues were collected for further researches. Moreover, the markers participated to mitochondrial dynamic, UPRmt,and oxidative stress in fundic gland were determined. Results revealed that vacuolar degeneration were observed in the treated groups contrast with control group, and the Cu level was boosted with the increasing intake of Cu. Besides that, the levels of CAT, TRX, H2O2, and G6PDH were reduced in group Ⅰ and group Ⅱ, the mRNA levels of NRF2, HO-1, SOD-1, CAT, SOD-2, GSR, GPX1, GPX4, and TRX in the treated groups were promoted contrast to control group. Furthermore, the protein expression of KEAP1 was dramatically decreased, and the protein expression of NRF2, TRX and HO-1 were markedly enhanced in group Ⅰ and Ⅱ at 80 days. Moreover, the mRNA and protein expression levels of MFN1, MFN2, and OPA1 down-regulated and protein level of DRP1 was increased with the adding levels of Cu. Nevertheless, the UPRmt-related mRNA levels of CLPP, HTRA-2, CHOP, HSP10, and HSP60 were enhanced dramatically in Cu treatment group compared with control group. In general, our current study demonstrated that excessive absorption of Cu in fundic gland were related with stimulating UPRmt, oxidative stress, and the NRF2 interceded antioxidant defense. These results could afford an updated evidence on molecular theory of Cu-invited toxicity.


Assuntos
Cobre , Dinâmica Mitocondrial , Animais , Cobre/toxicidade , Peróxido de Hidrogênio , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Suínos , Resposta a Proteínas não Dobradas
16.
Ecotoxicol Environ Saf ; 218: 112284, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33945902

RESUMO

Copper poses huge environmental and public health concerns due to its widespread and persistent use in the past several decades. Although it is well established that at higher levels copper causes nephrotoxicity, the exact mechanisms of its toxicity is not fully understood. Therefore, this experimental study for the first time investigates the potential molecular mechanisms including transcriptomics, metabolomics, serum biochemical, histopathological, cell apoptosis and autophagy in copper-induced renal toxicity in pigs. A total of 14 piglets were randomly assigned to two group (7 piglets per group) and treated with a standard diet (11 mg CuSO4 per kg of feed) and a high copper diet (250 mg CuSO4 per kg of feed). The results of serum biochemical tests and renal histopathology suggested that 250 mg/kg CuSO4 in the diet significantly increased serum creatinine (CREA) and induced renal tubular epithelial cell swelling. Results on transcriptomics and metabolomics showed alteration in 804 genes and 53 metabolites in kidneys of treated pigs, respectively. Combined analysis of transcriptomics and metabolomics indicated that different genes and metabolism pathways in kidneys of treated pigs were involved in glycerophospholipids metabolism and glycosphingolipid metabolism. Furthermore, copper induced mitochondrial apoptosis characterized by increased bax, bak, caspase 3, caspase 8 and caspase 9 expressions while decreased bcl-xl and bcl2/bax expression. Exposure to copper decreased the autophagic flux in terms of increased number of autophagosomes, beclin1 and LC3b/LC3a expression and p62 accumulation. These results indicated that the imbalance of glycosphingolipid metabolism, the impairment of autophagy and increase mitochondrial apoptosis play an important role in copper induced renal damage and are useful mechanisms to understand the mechanisms of copper nephrotoxicity.

17.
Ecotoxicol Environ Saf ; 206: 111366, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33010598

RESUMO

To explore the effects of copper (Cu) on energy metabolism and AMPK-mTOR pathway-mediated autophagy in kidney, a total of 240 one-day-old broiler chickens were randomized into four equal groups and fed on the diets with different levels of Cu (11, 110, 220, and 330 mg/kg) for 49 d. Results showed that excess Cu could induce vacuolar degeneration and increase the number of autophagosomes in kidney, and the adenosine triphosphate (ATP) level and mRNA levels of energy metabolism-related genes were decreased with the increasing dietary Cu level. Moreover, immunohistochemistry and immunofluorescence showed that the positive expressions of Beclin1 and LC3-II were mainly located in cytoplasm of renal tubular epithelial cells and increased significantly with the increasing levels of Cu. The mRNA levels of Beclin1, Atg5, LC3-I, LC3-II, Dynein and the protein levels of Beclin1, Atg5, LC3-II/LC3-I and p-AMPKα1/AMPKα1 were markedly elevated in treated groups compared with control group (11 mg/kg Cu). However, the mRNA and protein levels of p62 and p-mTOR/mTOR were significantly decreased with the increasing levels of Cu. These results suggest that impaired energy metabolism induced by Cu may lead to autophagy via AMPK-mTOR pathway in kidney of broiler chickens.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Cobre/toxicidade , Metabolismo Energético/efeitos dos fármacos , Rim/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Galinhas , Exposição Dietética/efeitos adversos , Exposição Dietética/análise , Metabolismo Energético/genética , Rim/metabolismo , Rim/patologia , Transdução de Sinais/efeitos dos fármacos
18.
Ecotoxicol Environ Saf ; 200: 110715, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32450432

RESUMO

Copper (Cu) is a necessary trace mineral due to its biological activity. Excessive Cu can induce inflammatory response in humans and animals, but the underlying mechanism is still unknown. Here, 240 broilers were used to study the effects of excessive Cu on oxidative stress and NF-κB-mediated inflammatory responses in immune organs. Chickens were fed with diet containing different concentrations of Cu (11, 110, 220, and 330 mg of Cu/kg dry matter). The experiment lasted for 49 days. Spleen, thymus, and bursa of Fabricius (BF) on day 49 were collected for histopathological observation and assessment of oxidative stress status. Additionally, the mRNA and protein levels of NF-κB and inflammatory cytokines were also analyzed. The results indicated that excess Cu could increase the number and area of splenic corpuscle as well as the ratio of cortex and medulla in thymus and BF. Furthermore, excessive Cu intake could decrease activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px); but increase contents of malondialdehyde (MDA), TNF-α, IL-1, IL-1ß; up-regulate mRNA levels of TNF-α, IFN-γ, IL-1, IL-1ß, IL-2, iNOS, COX-2, NF-κB and protein levels of TNF-α, IFN-γ, NF-κB, p-NF-κB in immune organs. In conclusion, excessive Cu could cause pathologic changes and induce oxidative stress with triggered NF-κB pathway, and might further regulate the inflammatory response in immune organs of chicken.


Assuntos
Galinhas/imunologia , Cobre/toxicidade , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Bolsa de Fabricius/enzimologia , Bolsa de Fabricius/imunologia , Bolsa de Fabricius/metabolismo , Bolsa de Fabricius/patologia , Catalase/metabolismo , Galinhas/genética , Galinhas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Glutationa Peroxidase/metabolismo , Inflamação/genética , Inflamação/metabolismo , Malondialdeído/metabolismo , NF-kappa B/genética , Baço/enzimologia , Baço/imunologia , Baço/metabolismo , Baço/patologia , Superóxido Dismutase/metabolismo , Timo/enzimologia , Timo/imunologia , Timo/metabolismo , Timo/patologia
19.
Ecotoxicol Environ Saf ; 190: 110063, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846860

RESUMO

Arsenic is a toxic metalloid that can cause male reproductive malfunctions and is widely distributed in the environment. The aim of this study was to investigate the cytotoxicity of arsenic trioxide (ATO) induced GC-1 spermatogonial (spg) cells. Our results found that ATO increased the levels of catalase (CAT) and malonaldehyde (MDA) and reactive oxygen species (ROS), while decreasing glutathione (GSH) and the total antioxidant capacity (T-AOC). Therefore, ATO triggered oxidative stress in GC-1 spg cells. In addition, ATO also caused severe mitochondrial dysfunction that included an increase in residual oxygen consumption (ROX), and decreased the routine respiration, maximal and ATP-linked respiration (ATP-L-R), as well as spare respiratory capacity (SRC), and respiratory control rate (RCR); ATO also damaged the mitochondrial structure, including mitochondrial cristae disordered and dissolved, mitochondrial vacuolar degeneration. Moreover, degradation of p62, LC3 conversion, increasing the number of acidic vesicle organelles (AVOs) and autophagosomes and autolysosomes are demonstrated that the cytotoxicity of ATO may be associated with autophagy. Meanwhile, the metabolomics analysis results showed that 20 metabolites (10 increased and 10 decreased) were significantly altered with the ATO exposure, suggesting that maybe there are the perturbations in amino acid metabolism, lipid metabolism, glycan biosynthesis and metabolism, metabolism of cofactors and vitamins. We concluded that ATO was toxic to GC-1 spg cells via inducing oxidative stress, mitochondrial dysfunction and autophagy as well as the disruption of normal metabolism. This study will aid our understanding of the mechanisms behind ATO-induced spermatogenic toxicity.


Assuntos
Trióxido de Arsênio/toxicidade , Autofagia/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espermatogônias/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Glutationa/metabolismo , Lisossomos/metabolismo , Masculino , Metabolômica , Camundongos , Mitocôndrias/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Espermatogônias/enzimologia , Espermatogônias/metabolismo
20.
Ecotoxicol Environ Saf ; 190: 110158, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31918257

RESUMO

Copper (Cu) is an essential trace element for most organisms. However, excessive Cu can be highly toxic. The purpose of this study was to elucidate the mechanism underlying Cu toxicity in the kidneys of rats after treatment with CuCl2 (15 [control], 30, 60, or 120 mg/kg in the diet) for 180 days. Histological and ultrastructural changes, antioxidant enzyme activity, and the mRNA and protein levels of apoptosis and autophagy-related genes were measured. The results showed that Cu exposure led to significant accumulation of copper in kidneys and disorganized kidney morphology. The activities of total anti-oxidation capacity (T-AOC) and superoxide dismutase (SOD) in the kidneys decreased significantly, while the malondialdehyde (MDA) content increased. Furthermore, excessive Cu markedly upregulated the expression of autophagy and apoptosis-related genes (LC3A, LC3B, ATG-5, Beclin-1, Caspase3, CytC, P53, Bax), but downregulated the expression of P62, mTOR and BCL-2. Moreover, the LC3B/LC3A, ATG-5, Beclin-1, P53, Caspase3 proteins were up-regulated while P62 was down-regulated in the kidney tissues of the treatment groups. Overall, these findings provide strong evidence that excess Cu can trigger autophagy and apoptosis via the mitochondrial pathway by inducing oxidative stress in rat kidneys.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cobre/toxicidade , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Rim/metabolismo , Rim/patologia , Malondialdeído/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA