Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Cell ; 71(2): 284-293.e4, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029006

RESUMO

The human FACT (facilitates chromatin transcription) complex, composed of two subunits SPT16 (Suppressor of Ty 16) and SSRP1 (Structure-specific recognition protein-1), plays essential roles in nucleosome remodeling. However, the molecular mechanism of FACT reorganizing the nucleosome still remains elusive. In this study, we demonstrate that FACT displays dual functions in destabilizing the nucleosome and maintaining the original histones and nucleosome integrity at the single-nucleosome level. We found that the subunit SSRP1 is responsible for maintenance of nucleosome integrity by holding the H3/H4 tetramer on DNA and promoting the deposition of the H2A/H2B dimer onto the nucleosome. In contrast, the large subunit SPT16 destabilizes the nucleosome structure by displacing the H2A/H2B dimers. Our findings provide mechanistic insights by which the two subunits of FACT coordinate with each other to fulfill its functions and suggest that FACT may play essential roles in preserving the original histones with epigenetic identity during transcription or DNA replication.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Nucleossomos/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , DNA/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Histonas/metabolismo , Humanos , Modelos Moleculares , Nucleossomos/genética , Ligação Proteica , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Células Sf9 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética
2.
Nucleic Acids Res ; 50(11): 6116-6136, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35670677

RESUMO

Human Positive Coactivator 4 (PC4) is a multifaceted chromatin protein involved in diverse cellular processes including genome organization, transcription regulation, replication, DNA repair and autophagy. PC4 exists as a phospho-protein in cells which impinges on its acetylation by p300 and thereby affects its transcriptional co-activator functions via double-stranded DNA binding. Despite the inhibitory effects, the abundance of phosphorylated PC4 in cells intrigued us to investigate its role in chromatin functions in a basal state of the cell. We found that casein kinase-II (CKII)-mediated phosphorylation of PC4 is critical for its interaction with linker histone H1. By employing analytical ultracentrifugation and electron microscopy imaging of in vitro reconstituted nucleosomal array, we observed that phospho-mimic (PM) PC4 displays a superior chromatin condensation potential in conjunction with linker histone H1. ATAC-sequencing further unveiled the role of PC4 phosphorylation to be critical in inducing chromatin compaction of a wide array of coding and non-coding genes in vivo. Concordantly, phospho-PC4 mediated changes in chromatin accessibility led to gene repression and affected global histone modifications. We propose that the abundance of PC4 in its phosphorylated state contributes to genome compaction contrary to its co-activator function in driving several cellular processes like gene transcription and autophagy.


Assuntos
Cromatina , Proteínas de Ligação a DNA , Histonas , Fatores de Transcrição , Caseína Quinase II/metabolismo , Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Genoma Humano , Histonas/genética , Histonas/metabolismo , Humanos , Nucleossomos , Fosforilação , Fatores de Transcrição/metabolismo
3.
Mikrochim Acta ; 191(9): 509, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101972

RESUMO

A BiVO4/Fe2O3 heterojunction for non-enzymatic photoelectrochemical (PEC) determination of hydrogen sulfide (H2S) is reported. The BiVO4/Fe2O3 heterojunction promoted the separation of photo-generated carriers, reduced electron-hole recombination, and thus improved electron collection and photocurrent. The proposed BiVO4/Fe2O3/FTO sensor exhibited a linear range of 1-500 µM and a detection limit of 0.51 nM H2S. In addition, high selectivity, good reproducibility, and stability were obtained for H2S sensing. The detection of H2S in water and serum samples demonstrated its feasibility. This work provides a new strategy to detect and understand the bio-function of H2S in the biological environment.

4.
Org Biomol Chem ; 21(14): 2910-2916, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36942676

RESUMO

The reactions of direct Csp2-H chalcogenylation and halogenation of N-arylpyrrolidone under the action of PIFA without a directing group and under metal-free conditions were reported in this paper. Diphenyl selenide/sulfur and selenium phenyl halides were used as reaction reagents to obtain chalcogenylated and halogenated N-arylpyrrolidone products, respectively. The mechanistic studies indicated that a radical pathway was likely involved in these reactions. Preliminary antitumor tests showed that these compounds have moderate to potent activities against human acute leukemia cells K562 in vitro, which may be used as lead compounds for subsequent research.

5.
Bioorg Med Chem Lett ; 73: 128919, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35931243

RESUMO

With the help of the establishment of novel reaction methodology, a series of N-Aryl-5-(2,2,2-trifluoroethoxy)-1,5-dihydro-2H-pyrrol-2-one conjugates were designed and synthesized in 2-4 steps, and subsequent anticancer activity of these compounds was evaluated. Preliminary results showed that these compounds have moderate to potent activities against human acute leukemia cells K562, human lung cancer A549, human breast cancer MDA-MB-231, and human cervical cancer HeLa cancer cell lines. Among them, compounds 2d and 2k were the most potent against K562 cell line with IC50 values of 0.07 and 0.52 µM, respectively, and the toxicity of 2d to the normal of hepatocytes (LO2) cell line was low (the survival rate 81 %). Flow cytometry analysis showed that 2d arrested K562 cells in the G2/M phase potently, even much better than Combretastatin A4 (CA4). In addition, the results demonstrated the involvement of the caspase-dependent or independent pathways of apoptosis, evidenced by the upregulation of FADD, pro-caspase 3, cleaved-caspase 3, HTRA2/Omi, SMAC/Diablo and the ratio of Bax/Bcl-2.The biological effects founding of 2d in this work point to prospective uses against acute leukemia.


Assuntos
Antineoplásicos , Leucemia , Antineoplásicos/farmacologia , Apoptose , Caspase 3 , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
6.
AoB Plants ; 16(2): plae017, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38585158

RESUMO

Evolution of cellular characteristics is a fundamental aspect of evolutionary biology, but knowledge about evolution at the cellular level is very limited. In particular, whether a certain intracellular characteristic evolved in angiosperms, and what significance of such evolution is to angiosperms, if it exists, are important and yet unanswered questions. We have found that bidirectional cytokinesis occurs or likely occurs in male meiosis in extant basal and near-basal angiosperm lineages, which differs from the unidirectional cytokinesis in male meiosis in monocots and eudicots. This pattern of cytokinesis in angiosperms seems to align with the distribution pattern of angiosperms with the lineages basal to monocots and eudicots living in tropical, subtropical or temperate environments and monocots and eudicots in an expanded range of environments including tropical, subtropical, temperate, subarctic and arctic environments. These two cytokinetic modes seem to result from two phragmoplast types, respectively. A phragmoplast in the bidirectional cytokinesis dynamically associates with the leading edge of a growing cell plate whereas a phragmoplast in the unidirectional cytokinesis is localized to an entire division plane. The large assembly of microtubules in the phragmoplast in unidirectional cytokinesis may be indicative of increased microtubule stability compared with that of the small microtubule assembly in the phragmoplast in bidirectional cytokinesis. Microtubules could conceivably increase their stability from evolutionary changes in tubulins and/or microtubule-associated proteins. Microtubules are very sensitive to low temperatures, which should be a reason for plants to be sensitive to low temperatures. If monocots and eudicots have more stable microtubules than other angiosperms, they will be expected to deal with low temperatures better than other angiosperms. Future investigations into the male meiotic cytokinetic directions, microtubule stability at low temperatures, and proteins affecting microtubule stability in more species may shed light on how plants evolved to inhabit cold environments.

7.
Int J Biol Macromol ; 280(Pt 1): 135671, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39284463

RESUMO

d-Limonene is the predominant component of essential oil from Exocarpium Citri Grandis, known for its antibacterial, antioxidant, insecticidal, and anti-inflammatory properties. The synthesis, transport, and accumulation of d-limonene in Citrus grandis 'Tomentosa' fruits are regulated by limonene synthase (LS) and its associated regulatory genes. This study addresses the gap in understanding the spatiotemporal cytological changes of LS and its regulatory genes. Through cytochemical techniques, we investigated the distribution of essential oil in the plastids, endoplasmic reticulum, and vacuoles of secretory cavity cells. We identified the LS-encoding gene CgLS via transcriptomics and demonstrated in vitro that CgLS catalyzes the formation of d-limonene from geranyl diphosphate (GPP). Transient overexpression of CgLS increased monoterpene limonene accumulation, while TRV virus-induced gene silencing reduced it. CgLS expression levels and d-limonene content showed spatiotemporal consistency with fruit development, with in situ hybridization revealing predominant expression in secretory cavity cells. Immunocytochemical localization indicated that CgLS is primarily located in the endoplasmic reticulum, plastids, and vacuoles. Our findings suggest that CgLS is translated in the endoplasmic reticulum and transported to plastids and vacuoles where d-limonene synthesis occurs. This study provides comprehensive insights into the characteristics of CgLS and its role in d-limonene synthesis at the tissue, cellular, and molecular levels in C. grandis 'Tomentosa'.

8.
Cell Regen ; 13(1): 20, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358480

RESUMO

The COVID-19 pandemic has caused a global health crisis and significant social economic burden. While most individuals experience mild or non-specific symptoms, elderly individuals are at a higher risk of developing severe symptoms and life-threatening complications. Exploring the key factors associated with clinical severity highlights that key characteristics of aging, such as cellular senescence, immune dysregulation, metabolic alterations, and impaired regenerative potential, contribute to disruption of tissue homeostasis of the lung and worse clinical outcome. Senolytic and senomorphic drugs, which are anti-aging treatments designed to eliminate senescent cells or decrease the associated phenotypes, have shown promise in alleviating age-related dysfunctions and offer a novel approach to treating diseases that share certain aspects of underlying mechanisms with aging, including COVID-19. This review summarizes the current understanding of aging in COVID-19 progression, and highlights recent findings on anti-aging drugs that could be repurposed for COVID-19 treatment to complement existing therapies.

9.
Cell Res ; 34(10): 707-724, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39103524

RESUMO

The hierarchical packaging of chromatin fibers plays a critical role in gene regulation. The 30-nm chromatin fibers, a central-level structure bridging nucleosomal arrays to higher-order organizations, function as the first level of transcriptional dormant chromatin. The dynamics of 30-nm chromatin fiber play a crucial role in biological processes related to DNA. Here, we report a 3.6-angstrom resolution cryogenic electron microscopy structure of H5-bound dodecanucleosome, i.e., the chromatin fiber reconstituted in the presence of linker histone H5, which shows a two-start left-handed double helical structure twisted by tetranucleosomal units. An atomic structural model of the H5-bound chromatin fiber, including an intact chromatosome, is built, which provides structural details of the full-length linker histone H5, including its N-terminal domain and an HMG-motif-like C-terminal domain. The chromatosome structure shows that H5 binds the nucleosome off-dyad through a three-contact mode in the chromatin fiber. More importantly, the H5-chromatin structure provides a fine molecular basis for the intra-tetranucleosomal and inter-tetranucleosomal interactions. In addition, we systematically validated the physiological functions and structural characteristics of the tetranucleosomal unit through a series of genetic and genomic studies in Saccharomyces cerevisiae and in vitro biophysical experiments. Furthermore, our structure reveals that multiple structural asymmetries of histone tails confer a polarity to the chromatin fiber. These findings provide structural and mechanistic insights into how a nucleosomal array folds into a higher-order chromatin fiber with a polarity in vitro and in vivo.


Assuntos
Cromatina , Histonas , Nucleossomos , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Nucleossomos/química , Histonas/metabolismo , Histonas/química , Cromatina/metabolismo , Cromatina/química , Microscopia Crioeletrônica , Ligação Proteica , Modelos Moleculares
10.
Front Pharmacol ; 14: 1212116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818186

RESUMO

Hepatocellular carcinoma (HCC) patients experience high rates of recurrence following hepatectomy. Many herbal preparations used in traditional Chinese medicine have been shown to improve the postoperative condition of cancer patients. This retrospective study examined the efficacy and safety of Jianpi Huayu decoction (JPHYD) as adjuvant therapy for HCC following hepatectomy. HCC patients received postoperative management according to Chinese Society of Clinical Oncology recommendations, either alone (Control group) or in addition to daily JPHYD (1 week in hospital and 3 months after release). To reduce selection bias, we performed 1:1 propensity score matching between the Control and JPHYD groups. The main endpoint was recurrence-free survival (RFS), and secondary endpoints included overall survival (OS) and adverse event frequency. A total of 207 patients meeting inclusion criteria were enrolled, 127 in the Control group and 80 in the JPHYD group. Patients were then propensity score-matched, yielding each group of 80. Recurrence-free survival rate was significantly higher in the JPHYD group than in the Control group at 1 year (67.9% vs. 38.1%), 2 years (39.1% vs. 26.2%), and 3 years (31.3% vs. 26.2%) following hepatectomy (HR 0.5666 [95%CI, 0.3655 to 0.8784]; p = 0.0066). Additionally, OS was significantly higher in the JPHYD group than the Control group at 1 year (94.3% vs. 81.9%), 2 years (76.4% vs. 58.8%), and 3 years (66.3% vs. 51.4%) following hepatectomy (HR 0.5199 [95%CI, 0.2849 to 0.9490]; p = 0.027). Adverse events frequencies did not differ between the two groups. In conclusion, JPHYD can safely improve RFS and OS following hepatectomy for HCC.

11.
Cell Death Dis ; 14(3): 184, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882393

RESUMO

Deficiency of the histone H3K9 methyltransferase SETDB1 induces RIPK3-dependent necroptosis in mouse embryonic stem cells (mESCs). However, how necroptosis pathway is activated in this process remains elusive. Here we report that the reactivation of transposable elements (TEs) upon SETDB1 knockout is responsible for the RIPK3 regulation through both cis and trans mechanisms. IAPLTR2_Mm and MMERVK10c-int, both of which are suppressed by SETDB1-dependent H3K9me3, act as enhancer-like cis-regulatory elements and their RIPK3 nearby members enhance RIPK3 expression when SETDB1 is knockout. Moreover, reactivated endogenous retroviruses generate excessive viral mimicry, which promotes necroptosis mainly through Z-DNA-binding protein 1 (ZBP1). These results indicate TEs play an important role in regulating necroptosis.


Assuntos
Elementos de DNA Transponíveis , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Elementos de DNA Transponíveis/genética , Necroptose/genética , Histona Metiltransferases , Proteínas de Ligação a RNA
12.
Int J Antimicrob Agents ; 62(5): 106972, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741585

RESUMO

Eradication of methicillin-resistant Staphylococcus aureus (MRSA) is challenging due to multi-drug resistance of strains and biofilm formation, the latter of which is an important barrier to the penetration of antibiotics and host defences. As such, there is an urgent need to discover and develop novel agents to fight MRSA-associated infection. In this study, HL-J6, a novel indolylbenzoquinone compound, was shown to inhibit S. aureus strains, with a minimum inhibitory concentration against MRSA252 of 2 µg/mL. Moreover, HL-J6 exhibited potent antibiofilm activity in vitro and was able to kill bacteria in biofilm. In the mouse models of wound infection, HL-J6 treatment reduced the MRSA load significantly and inhibited biofilm formation on the wounds. The potent targets of its antibiofilm activity were explored by real-time reverse transcriptase polymerase chain rection, which indicated that HL-J6 downregulated the transcription levels of sarA, atlAE and icaADBC. Moreover, Western blot results showed that HL-J6 reduced the secretion level of α-toxin, a major virulence factor. These findings indicate that HL-J6 is a promising lead compound for the development of novel drugs against MRSA biofilm infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Camundongos , Staphylococcus aureus , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Testes de Sensibilidade Microbiana
13.
Front Plant Sci ; 14: 1099250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37235019

RESUMO

Zingiber zerumbet and Zingiber corallinum are economically valuable species in the genus Zingiber. While Z. corallinum is sexually active, Z. zerumbet adopts clonal propagation, although it has the potential for sexual reproduction. It is unclear so far at which step during the sexual reproduction of Z. zerumbet inhibition occurs, and what are the regulatory mechanisms underlying this inhibition. Here, by comparing with the fertile species Z. corallinum using microscopy-based methods, we show that rare differences were observed in Z. zerumbet up to the point when the pollen tubes invaded the ovules. However, a significantly higher percentage of ovules still contained intact pollen tubes 24 h after pollination, suggesting pollen tube rupture was impaired in this species. Further RNA-seq analysis generated accordant results, showing that the transcription of ANX and FER, as well as genes for the partners in the same complexes (e.g., BUPS and LRE, respectively), and those putative peptide signals (e.g., RALF34), were timely activated in Z. corallinum, which ensured the pollen tubes being able to grow, reorient to ovules, and receipt by embryo sacs. In Z. zerumbet, genes for these complexes were cooperatively suppressed, which would result in the maintenance of PT integrity due to the disruption of RALF34-ANX/BUPS signaling in PT and the failure of PT reception by an active synergid due to the insufficiency of the synergid-harbored FER/LRE complex. Taking the results from the cytological and RNA-seq studies together, a model is proposed to illustrate the possible regulation mechanisms in Z. zerumbet and Z. corallinum, in which the regulations for pollen tube rupture and reception are proposed as the barrier for sexual reproduction in Z. zerumbet.

14.
Eur J Med Chem ; 237: 114375, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35477142

RESUMO

Breast cancer is one of the most common cancers in the world, and pro-apototic drugs activating the apoptotic pathway are a strategy for anticancer therapy. To explore new antineoplastic agents, a series of novel mono-indolylbenzoquinone derivatives have been designed and synthesized. Compared with the lead bis-indolylbenzoquinones, most of the novel mono-indolylbenzoquinone derivatives have significantly increased their activity against A549, HeLa, and especially, MDA-MB-231 cell lines. Among them, 10d has the lowest IC50 value of 70 nM on MDA-MB-231 cells. Moreover, its oral toxicity is extremely low with an LD50 value of 374 mg/kg and no obvious liver and kidney damage to mice. 10d down-regulated Bcl-2, up-regulated Bax, and increased the release of cytochrome C, caspase3 and 9. 10d also up-regulated the expression of p53, catalase, and HTRA2/Omi. Therefore, 10d may exert its anticancer activity by activating apoptotic pathway and p53 expression. In vivo, 10d suppressed breast cancer 4T1 tumor growth with 36% inhibition ratio of tumor by intraperitoneal injection in mice. Furthermore, a cross-linked cyanoacrylate (CA)-based local sustained-release drug delivery systems (LSRDDSs) improved 10d anticancer activity to 49.8% inhibition of tumor growth. Taken together, 10d could be a promising drug candidate for clinical development to treat metastatic breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Animais , Apoptose , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Proteína Supressora de Tumor p53
15.
Front Immunol ; 13: 967944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159854

RESUMO

Background and objectives: Autoimmune hepatitis (AIH) is characterized by the expansion and accumulation of pathogenic T cells in liver. Although CD6 and its ligand activated leukocyte cell adhesion molecule (ALCAM) are involved in the evolution of multiple inflammatory diseases, their roles in the pathogenesis of AIH remain unknown. Herein, we aimed to investigate ALCAM-CD6 axis in AIH development. Methods: Immunohistochemistry was performed to examine hepatic expression of CD6 and ALCAM. The concentration of serum ALCAM was evaluated by ELISA. The phenotypes of liver infiltrating T cells were determined by flow cytometry. Primary human CD4+ T cells were used for functional studies. Results: Our data showed that patients with AIH exhibited significantly higher expression of CD6 in the liver as compared to primary biliary cholangitis (PBC), chronic hepatitis B (CHB), non-alcoholic liver disease (NAFLD), and healthy controls (HC). In addition, hepatic CD6 expression was strongly correlated with disease severity of AIH. CD6 was mainly expressed on CD4+ T cells in the liver and intrahepatic CD6highCD4+ T cells demonstrated stronger proinflammatory response and proliferation features than CD6low counterparts in both AIH and HC. ALCAM, the ligand of CD6, was highly expressed in the hepatocytes of AIH and serum ALCAM was strongly associated with clinical indices of AIH. Interestingly, close spatial location between CD6+CD4+ T cells and ALCAM+ hepatocytes was observed. Finally, we found that CD6highCD4+ T cells showed enhanced capacity of trans-endothelial migration in vitro, which could be promoted by recombinant ALCAM. Conclusions: Our study found that ALCAM-CD6 axis was upregulated in the AIH liver, suggesting a potential target for alleviating AIH.


Assuntos
Molécula de Adesão de Leucócito Ativado , Hepatite Autoimune , Antígenos CD , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Humanos , Ligantes , Linfócitos T
16.
Clin Rev Allergy Immunol ; 63(3): 342-356, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35657576

RESUMO

In autoimmune hepatitis (AIH), the persisting inflammation contributes to fibrosis progression, for which conventional biochemical markers manifest relatively unsatisfactory prediction. Herein, we assessed the value of serum CD48 (sCD48) as an indicator for inflammation and fibrosis in AIH type 1. The levels of sCD48 were detected first in an exploratory cohort using ELISA. In this cohort, compared with healthy controls (4.90 ng/mL, P < 0.0001), primary biliary cholangitis (7.32 ng/mL, P < 0.0001), and non-alcoholic fatty liver disease (7.76 ng/mL, P < 0.0001), sCD48 levels were elevated in AIH (12.81 ng/mL) and correlated with histological inflammation and fibrosis. Further using multivariate logistic regression analysis, sCD48 was identified as an independent predictor for both significant inflammation (G3-4) and advanced fibrosis (S3-4). Two predictive scores, based on sCD48, were constructed for diagnosing significant inflammation and advanced fibrosis (sCD48-AIH-SI and sCD48-AIH-AF, respectively). Using these data as a premise, predictive abilities were subsequently evaluated and verified in a validation cohort. In the exploratory cohort, the area under the receiver operating characteristic curve of sCD48 and sCD48-AIH-SI, for significant inflammation, were 0.748 and 0.813, respectively. Besides, during treatment follow-up, sCD48 levels gradually decreased from immunosuppression initiation to re-evaluation biopsy, in parallel with aspartate transaminase, total sera IgG, and fibrosis-4 score. For AIH patients in a re-evaluation biopsy cohort, sCD48 could predict significant fibrosis (S2-4). Further using immunohistochemistry, hepatic CD48 expression was elevated in AIH patients and decreased after treatment. In conclusion, sCD48 and sCD48-based predictive scores predict histological inflammation and fibrosis in AIH-1. Detecting sCD48 might help in the clinical management of AIH.


Assuntos
Hepatite Autoimune , Humanos , Biomarcadores , Inflamação , Fibrose
17.
Jpn J Clin Oncol ; 41(3): 386-93, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21127038

RESUMO

OBJECTIVE: To investigate the significance of hedgehog signaling pathway in chemoradiotherapy sensitivity and its effect on the prognosis of esophageal squamous cell carcinoma. METHODS: In the present study, we used the method of immunohistochemistry to examine the expression status of two hedgehog components, PTCH1 and glioma-associated oncogene GLI-1, in 100 pre-treated biopsy specimens of esophageal squamous cell carcinoma patients treated with definitive chemoradiotherapy. RESULTS: We find that high levels of PTCH1 and GLI-1 were detected in 76.0 and 72.0% of esophageal squamous cell carcinoma, respectively. Significant associations of high PTCH1 and GLI-1 expression with large tumor size (both P = 0.01), locoregional progression (P= 0.001 and 0.003, respectively) and the lack of complete response to chemoradiotherapy (P= 0.008 and 0.01, respectively) were observed. Univariate analysis revealed that high PTCH1 and GLI-1 expression was associated with poor locoregional progression-free survival, distant progression-free survival and overall survival. Furthermore, esophageal squamous cell carcinoma patients with high PTCH1 and GLI-1 expression have the shorter survival time than the subgroups with negative and low PTCH1 and GLI-1 expression. In multivariate analysis, PTCH1 and GLI-1 expression status were both evaluated as independent prognostic factors for locoregional progression-free survival, distant progression-free survival and overall survival. CONCLUSIONS: These findings suggest an important role for the activation of hedgehog signaling in esophageal squamous cell carcinoma progression and that PTCH1 and GLI-1 expression may be significantly associated with esophageal squamous cell carcinoma resistance to chemoradiotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidade , Radioterapia , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/terapia , Terapia Combinada , Neoplasias Esofágicas/terapia , Feminino , Seguimentos , Humanos , Técnicas Imunoenzimáticas , Masculino , Pessoa de Meia-Idade , Receptores Patched , Receptor Patched-1 , Taxa de Sobrevida , Resultado do Tratamento , Proteína GLI1 em Dedos de Zinco
18.
Plant Signal Behav ; 16(6): 1913308, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33853501

RESUMO

Comparing cellular features in microsporogenesis across taxa may yield important clues to evolution of meiosis in plants. We previously provided evidence that bidirectional cytokinesis occurs in M. denudata and suggested that the same may also occur in P. trimera based on a published report. Both M. denudata and P. trimera are basal angiosperm species that belong to the order of Magnoliales. For comparison, only unidirectional cytokinesis, either centripetal or centrifugal cytokinesis, has been found in microsporogenesis in eudicots and monocots. These observations raise the possibility that bidirectional cytokinesis is a common feature of microsporogenesis in basal angiosperms but not in eudicots and monocots. In this report, we provide evidence that bidirectional cytokinesis also occurs in another basal angiosperm species, Nymphaea colorata. The new findings, together with the previous findings, indicate that bidirectional cytokinesis is a prominent feature of microsporogenesis in at least some basal angiosperm species, and it occurs independently of cytokinesis types with respect to the timing of cytokinesis and tetrad configurations.


Assuntos
Polaridade Celular/fisiologia , Citocinese/fisiologia , Gametogênese Vegetal/fisiologia , Meiose/fisiologia , Nymphaea/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento
19.
Protoplasma ; 258(3): 621-632, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33389128

RESUMO

Magnolia, a basal angiosperm genus important for evolutionary and phylogenetic studies, is known to have male meiotic features not seen in the vast majority of angiosperms. However, knowledge about male meiosis in Magnolia is still fragmentary. Here, we report findings from an extensive investigation into male meiosis in Magnolia denudata using a combination of light and electron microscopy methods. Male meiosis in M. denudata was synchronous in prophase I but asynchronous in subsequent nuclear divisions. The polarized microspore mother cells from late prophase I onward had an elongated cell shape and thickened callose wall areas at the two smaller ends of the cell. The first nuclear division occurred along the long axis of the cell and the first callose furrow formed at the equatorial plane of the first nuclear division at the late telophase I stage. The second equatorial callose furrow formed after telophase II in a plane perpendicular to the first callose furrow. While cytokinesis occurred centripetally from the two furrows, a central callose wall island (CWI) appeared in the center of the cell and dense assemblies of vesicles and short tubules decorated the cytoplasmic regions between the furrows and the CWI. This cytokinesis mode differs from either the centripetal or the centrifugal mode of cytokinesis in microsporogenesis in the vast majority of angiosperms. As a result of this unusual cytokinesis, a large central callose mass remains in the mature tetrads. These observations may be useful to studies of cytokinetic mechanisms, evolution of microsporogenesis, and phylogenetics of angiosperms.


Assuntos
Divisão do Núcleo Celular/fisiologia , Polaridade Celular/fisiologia , Citocinese/fisiologia , Magnolia/química , Meiose/fisiologia
20.
Cell Rep ; 37(6): 109987, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758320

RESUMO

CENP-A (centromeric protein A), a histone H3 variant, specifies centromere identity and is essential to centromere maintenance. Little is known about how protein levels of CENP-A are controlled in mammalian cells. Here, we report that the phosphorylation of CENP-A Ser68 primes the ubiquitin-proteasome-mediated proteolysis of CENP-A during mitotic phase in human cultured cells. We identify two major polyubiquitination sites that are responsible for this phosphorylation-dependent degradation. Substituting the two residues, Lys49 and Lys124, with arginines abrogates proper CENP-A degradation and results in CENP-A mislocalization to non-centromeric regions. Furthermore, we find that DCAF11 (DDB1 and CUL4 associated factor 11/WDR23) is the E3 ligase that specifically mediates the observed polyubiquitination. Deletion of DCAF11 hampers CENP-A degradation and causes its mislocalization. We conclude that the Ser68 phosphorylation plays an important role in regulating cellular CENP-A homeostasis via DCAF11-mediated degradation to prevent ectopic localization of CENP-A during the cell cycle.


Assuntos
Ciclo Celular , Proteína Centromérica A/metabolismo , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Serina/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitinação , Animais , Centrômero , Proteína Centromérica A/química , Proteína Centromérica A/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas Culina/genética , Proteínas de Ligação a DNA/genética , Feminino , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nucleossomos , Fosforilação , Proteólise , Serina/química , Serina/genética , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA