Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 317: 116823, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37348798

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese herbal formula Xuefu Zhuyu decoction (XFZYD) is a classic formula in the category of invigorating blood circulation and resolving blood stasis. It has been proven to improve the neurological and ethological prognosis of traumatic brain injury. XFZYD promotes synaptic and axonal regeneration after traumatic brain injury, which is functionally modulated by the N6-methyladenosine (m6A) modification of RNA. However, the epigenetic effects of XFZYD on m6A modification remain unknown. AIM OF THE STUDY: To explore how XFZYD protects against traumatic brain injury induced by controlled cortical impact (CCI) injury by altering RNA m6A modification. MATERIALS AND METHODS: The modified neurological severity scoring and Morris water maze were performed to evaluate the neuroprotective effects of XFZYD for 14 days and screen the dose. Then, dot blot, western blotting, and methylated RNA immunoprecipitation sequencing (MeRIP-Seq) were used to explore changes in RNA m6A modification in the perilesional cortex. The Metascape platform was used to analyze the Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway of the differential m6A-tagged genes. Furthermore, MeRIP-qPCR was conducted to quantify differences in the hub differential m6A modification gene brain-derived neurotrophic factor (Bdnf). RESULTS: XFZYD significantly ameliorated the neurological deficits, spatial learning, and memory impairments in rats post-CCI on day 14. XFZYD enhanced the m6A level, and the expression of METTL14 and YTHDC2 in the perilesional cortex of CCI rats. In all three groups, the 3'-untranslated regions and coding sequence were primarily enriched for m6A peaks. XFZYD reversed the increased proportion of 3'-untranslated regions, and the decreased proportion of coding sequence and 5'-untranslated regions post-CCI. Moreover, XFZYD markedly downregulated 41 elevated m6A-tagged transcripts and upregulated 119 decreased m6A-tagged transcripts following CCI. Gene ontology and KEGG pathway analysis revealed that XFZYD-regulated m6A-tagged transcripts were predominantly enriched in synapse assembly, synaptic plasticity, learning or memory, and MAPK signaling pathway. Then, the hub-regulated m6A-tagged gene BDNF was identified. Both the m6A methylation level and the protein level of BDNF were ascended by XFZYD treatment. CONCLUSION: XFZYD improves neurological deficits, spatial learning and memory impairments in rats post-TBI probably through increasing the expression of METTL14 and BDNF in the cortex. Our study highlights a novel post-transcriptional regulation mechanism mediated by herbal medicine for traumatic brain injury treatment.


Assuntos
Lesões Encefálicas Traumáticas , Fator Neurotrófico Derivado do Encéfalo , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , RNA/uso terapêutico , Regiões não Traduzidas
2.
Artigo em Inglês | MEDLINE | ID: mdl-36164400

RESUMO

Background: Traumatic brain injury (TBI) is one of the most common neurosurgical diseases and refers to brain function impairment or brain pathological changes induced by external causes. A traditional Chinese medicine, Xuefu-Zhuyu Decoction (XFZYD), has been indicated to harbor therapeutic properties against TBI. Transfer RNA (tRNA)-derived small RNAs, that is, tsRNAs (a group of small RNAs derived from tRNAs), are multifunctional regulatory noncoding RNAs generated under pressure and implicated in the progression of TBI. Methods: A TBI model was successfully constructed using rats. We further performed sequencing and omics analyses to identify novel tsRNAs as drug targets for XFZYD therapy against TBI in the rat hippocampus. qPCR assays were used to further verify the experimental results. Gene Ontology (GO) was used to analyze the signaling pathways of downstream target genes of tsRNAs in the XFZYD-regulated TBI model. qPCR was used to detect the influence of overexpressed tsRNA mimics/inhibitors on their target genes in PC12 cells. Results: Our RNA-Seq data illustrate that 11 tsRNAs were mediated by XFZYD. The experimental data revealed AS-tDR-002004 and AS-tDR-002583 as potential targets for XFZYD therapy and showed that they influenced TBI via the cadherin signaling pathway, cocaine addiction, circadian entrainment, and the nicotine pharmacodynamics pathway. We also confirmed that Pi4kb, Mlh3, Pcdh9, and Ppp1cb were target genes of 2 XFZYD-regulated tsRNAs in the hippocampus of a rat model and PC12 cells. Furthermore, biological function analysis revealed the potential therapeutic effects of tsRNAs, and the results showed that Mapk1 and Gnai1 were related genes for XFZYD therapy against TBI. Conclusion: Our work successfully illuminates the efficiency of XFZYD in the treatment of TBI. The experimental data revealed AS-tDR-002004 and AS-tDR-002583 as potential targets for XFZYD therapy and showed that they influenced TBI via the cadherin signaling pathway, cocaine addiction, circadian entrainment, and the nicotine pharmacodynamics pathway in a TBI rat model.

3.
Phytomedicine ; 102: 154168, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35623157

RESUMO

BACKGROUND: Xuefu Zhuyu Decoction (XFZYD), a well-known traditional Chinese medicine prescription, has been widely used to treat traumatic brain injury (TBI). However, the underlying mechanisms involved in XFZYD therapy remain unclear. AIM OF THE STUDY: We explored new therapeutic targets of XFZYD in TBI by the tsRNA-sequencing (tsRNA-seq) method. MATERIAL AND METHODS: High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to assess the quality of XFZYD. Male Sprague-Dawley rats were randomly categorized into three groups: sham, TBI, and XFZYD. The protective effects of XFZYD were investigated in vivo by using the Morris water maze (MWM), modified neurological severity score (mNSS) tests, hematoxylin-eosin (H&E) staining, and Nissl staining. tsRNA-seq was applied to analyze the expression of tsRNAs in the rat cortex. Four tsRNAs were validated by qRT-PCR. The biological function of putative tsRNAs was investigated using bioinformatics techniques. The functions of tsRNAs targeting mRNAs were verified in vitro. RESULTS: The mNSS and MWM indicated that XFZYD notably improved neurological deficits and cognitive function after TBI (p < 0.05). H&E staining and Nissl staining demonstrated that XFZYD suppressed damage and neuronal loss in the TBI rat cortex. We evaluated the dysregulated expression of 732 tsRNAs (128 tsRNAs were significantly altered in the TBI/sham group (fold change > 2 and p < 0.05), and 97 tsRNAs were dysregulated in the XFZYD/TBI group (fold change > 2 and p < 0.05)) in the TBI rat cortex. Interestingly, 41 tsRNAs were distinctly regulated by XFZYD. The qRT-PCR results of the four randomly chosen tsRNAs (tRF-54-75-Glu-TTC-2, tRF-55-75-Gln-CTG-2-M2, tRF-55-76-Val-TAC-1, tRF-64-85-Leu-AAG-1-M4) exhibited trends similar to those of the tsRNA-seq data. We certified the possible targets of tsRNAs and suggested the crosscurrent in the expression trend of the target genes. Bioinformatics analysis showed that XFZYD-related tsRNAs could contribute to regulating insulin resistance, the calcium signaling pathway, autophagy, and axon guidance. CONCLUSIONS: The current research implies that tsRNAs are putative therapeutic targets of XFYZD for TBI treatment. This research provides new insight into the therapeutic targets of XFZYD in treating TBI.


Assuntos
Lesões Encefálicas Traumáticas , Espectrometria de Massas em Tandem , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Medicamentos de Ervas Chinesas , Masculino , RNA de Transferência/uso terapêutico , Ratos , Ratos Sprague-Dawley
4.
Artigo em Inglês | MEDLINE | ID: mdl-34394386

RESUMO

BACKGROUND: Infertility affects approximately 15% of couples around the world, and male factors are accounted for 40-50%. Oligoasthenozoospermia is the most common reason for male infertility. Unfortunately, effective drug therapy is still lacking except for assisted reproductive technology (ART). Previous researchers found that Wuzi Ershen decoction (WZESD) can increase sperm count, enhance sperm vitality, and improve semen quality. However, the pharmacological mechanisms remain unclear. METHODS: In this study, we screened compounds and predicted the targets of WZESD based on the TCMSP and BATMAN-TCM database combined with literature searching in the PubMed database. We obtained proteins related to oligoasthenozoospermia through GeneCards and submitted them to STRING to obtain the protein-protein interaction (PPI) network. Potential targets of WZESD were mapped to the network, and the hub targets were screened by topology. We used online platform Metascape and Enrichr for GO and KEGG enrichment analyses. AutoDock Vina was utilized for further verification of the binding mode between compounds and targets. RESULTS: Totally, 276 bioactive compounds were obtained and targeted 681 proteins. 446 oligoasthenozoospermia disease-specific proteins were acquired, and further bioinformatics analysis found that they were mainly involved in the formation of gametes, meiosis, and sperm differentiation. Protein interaction network analysis revealed that target proteins of WZESD were associated with oligoasthenozoospermia disease-specific proteins. The 79 targets of disease-specific proteins, which were anchored by WZESD, mainly participate in the cellular response to the organic cyclic compound, regulation of the apoptotic process, nitricoxide biosynthetic and metabolic process, oxidative stress, and protein phosphorylation regulation, which are the causes for oligoasthenozoospermia. Molecular docking simulation further validated that bioactive compounds originated from WZESD with targeted proteins showed high binding efficiency. CONCLUSIONS: This study uncovers the therapeutic mechanisms of WZESD for oligoasthenozoospermia treatment from the perspective of network pharmacology and may provide a valuable reference for further experimental research studies and clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA