Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108679

RESUMO

Alu elements are transposable elements that can influence gene regulation through several mechanisms; nevertheless, it remains unclear whether dysregulation of Alu elements contributes to the neuropathology of autism spectrum disorder (ASD). In this study, we characterized transposable element expression profiles and their sequence characteristics in the prefrontal cortex tissues of ASD and unaffected individuals using RNA-sequencing data. Our results showed that most of the differentially expressed transposable elements belong to the Alu family, with 659 loci of Alu elements corresponding to 456 differentially expressed genes in the prefrontal cortex of ASD individuals. We predicted cis- and trans-regulation of Alu elements to host/distant genes by conducting correlation analyses. The expression level of Alu elements correlated significantly with 133 host genes (cis-regulation, adjusted p < 0.05) associated with ASD as well as the cell survival and cell death of neuronal cells. Transcription factor binding sites in the promoter regions of differentially expressed Alu elements are conserved and associated with autism candidate genes, including RORA. COBRA analyses of postmortem brain tissues showed significant hypomethylation in global methylation analyses of Alu elements in ASD subphenotypes as well as DNA methylation of Alu elements located near the RNF-135 gene (p < 0.05). In addition, we found that neuronal cell density, which was significantly increased (p = 0.042), correlated with the expression of genes associated with Alu elements in the prefrontal cortex of ASD. Finally, we determined a relationship between these findings and the ASD severity (i.e., ADI-R scores) of individuals with ASD. Our findings provide a better understanding of the impact of Alu elements on gene regulation and molecular neuropathology in the brain tissues of ASD individuals, which deserves further investigation.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Elementos Alu/genética , Elementos de DNA Transponíveis , Metilação de DNA , Epigênese Genética , Córtex Pré-Frontal/metabolismo
2.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34947998

RESUMO

Bisphenol A (BPA) is an environmental risk factor for autism spectrum disorder (ASD). BPA exposure dysregulates ASD-related genes in the hippocampus and neurological functions of offspring. However, whether prenatal BPA exposure has an impact on genes in the prefrontal cortex, another brain region highly implicated in ASD, and through what mechanisms have not been investigated. Here, we demonstrated that prenatal BPA exposure disrupts the transcriptome-interactome profiles of the prefrontal cortex of neonatal rats. Interestingly, the list of BPA-responsive genes was significantly enriched with known ASD candidate genes, as well as genes that were dysregulated in the postmortem brain tissues of ASD cases from multiple independent studies. Moreover, several differentially expressed genes in the offspring's prefrontal cortex were the targets of ASD-related transcription factors, including AR, ESR1, and RORA. The hypergeometric distribution analysis revealed that BPA may regulate the expression of such genes through these transcription factors in a sex-dependent manner. The molecular docking analysis of BPA and ASD-related transcription factors revealed novel potential targets of BPA, including RORA, SOX5, TCF4, and YY1. Our findings indicated that prenatal BPA exposure disrupts ASD-related genes in the offspring's prefrontal cortex and may increase the risk of ASD through sex-dependent molecular mechanisms, which should be investigated further.


Assuntos
Transtorno do Espectro Autista/genética , Compostos Benzidrílicos/efeitos adversos , Perfilação da Expressão Gênica/métodos , Fenóis/efeitos adversos , Córtex Pré-Frontal/química , Efeitos Tardios da Exposição Pré-Natal/genética , Fatores de Transcrição/genética , Animais , Transtorno do Espectro Autista/induzido quimicamente , Modelos Animais de Doenças , Receptor alfa de Estrogênio/genética , Feminino , Regulação da Expressão Gênica , Simulação de Acoplamento Molecular , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Receptores Androgênicos/genética , Análise de Sequência de RNA , Caracteres Sexuais
3.
Int J Mol Sci ; 21(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961747

RESUMO

Autism spectrum disorder (ASD) describes a group of neurodevelopmental disorders with core deficits in social communication and manifestation of restricted, repetitive, and stereotyped behaviors. Despite the core symptomatology, ASD is extremely heterogeneous with respect to the severity of symptoms and behaviors. This heterogeneity presents an inherent challenge to all large-scale genome-wide omics analyses. In the present study, we address this heterogeneity by stratifying ASD probands from simplex families according to the severity of behavioral scores on the Autism Diagnostic Interview-Revised diagnostic instrument, followed by re-analysis of existing DNA methylation data from individuals in three ASD subphenotypes in comparison to that of their respective unaffected siblings. We demonstrate that subphenotyping of cases enables the identification of over 1.6 times the number of statistically significant differentially methylated regions (DMR) and DMR-associated genes (DAGs) between cases and controls, compared to that identified when all cases are combined. Our analyses also reveal ASD-related neurological functions and comorbidities that are enriched among DAGs in each phenotypic subgroup but not in the combined case group. Moreover, relational gene networks constructed with the DAGs reveal signaling pathways associated with specific functions and comorbidities. In addition, a network comprised of DAGs shared among all ASD subgroups and the combined case group is enriched in genes involved in inflammatory responses, suggesting that neuroinflammation may be a common theme underlying core features of ASD. These findings demonstrate the value of phenotype definition in methylomic analyses of ASD and may aid in the development of subtype-directed diagnostics and therapeutics.


Assuntos
Transtorno do Espectro Autista , Metilação de DNA/genética , Redes Reguladoras de Genes , Fenótipo , Irmãos , Transdução de Sinais/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Feminino , Humanos , Masculino
4.
Int J Mol Sci ; 20(15)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382655

RESUMO

Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder characterized by impaired social communication coupled with stereotyped behaviors and restricted interests. Despite the high concordance rate for diagnosis, there is little information on the magnitude of genetic contributions to specific ASD behaviors. Using behavioral/trait severity scores from the Autism Diagnostic Interview-Revised (ADI-R) diagnostic instrument, we compared the phenotypic profiles of mono- and dizygotic twins where both co-twins were diagnosed with ASD or only one twin had a diagnosis. The trait distribution profiles across the respective twin populations were first used for quantitative trait association analyses using publicly available genome-wide genotyping data. Trait-associated single nucleotide polymorphisms (SNPs) were then used for case-control association analyses, in which cases were defined as individuals in the lowest (Q1) and highest (Q4) quartiles of the severity distribution curves for each trait. While all of the ASD-diagnosed twins exhibited similar trait severity profiles, the non-autistic dizygotic twins exhibited significantly lower ADI-R item scores than the non-autistic monozygotic twins. Case-control association analyses of twins stratified by trait severity revealed statistically significant SNPs with odds ratios that clearly distinguished individuals in Q4 from those in Q1. While the level of shared genomic variation is a strong determinant of the severity of autistic traits in the discordant non-autistic twins, the similarity of trait profiles in the concordantly autistic dizygotic twins also suggests a role for environmental influences. Stratification of cases by trait severity resulted in the identification of statistically significant SNPs located near genes over-represented within autism gene datasets.


Assuntos
Transtorno do Espectro Autista/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Locos de Características Quantitativas/genética , Transtorno do Espectro Autista/patologia , Criança , Feminino , Heterogeneidade Genética , Genótipo , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Índice de Gravidade de Doença , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética
5.
Horm Behav ; 101: 13-21, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29042182

RESUMO

Recent research on the etiology of autism spectrum disorder (ASD) has shifted in part from a singular focus on genetic causes to the involvement of environmental factors and their gene interactions. This shift in focus is a result of the rapidly increasing prevalence of ASD coupled with the incomplete penetrance of this disorder in monozygotic twins. One such area of environmentally focused research is the association of exposures to endocrine disrupting compounds (EDCs) with elevated risk for ASD. EDCs are exogenous chemicals that can alter endogenous hormone activity and homeostasis, thus potentially disrupting the action of sex and other natural hormones at all stages of human development. Inasmuch as sex hormones play a fundamental role in brain development and sexual differentiation, exposure to EDCs in utero during critical stages of development can have lasting neurological and other physiological influences on the developing fetus and, ultimately, the child as well as adult. This review will focus on the possible contributions of EDCs to autism risk and pathogenesis by first discussing the influence of endogenous sex hormones on the autistic phenotype, followed by a review of documented human exposures to EDCs and associations with behaviors relevant to ASD. Mechanistic links between EDC exposures and aberrant neurodevelopment and behaviors are then considered, with emphasis on EDC-induced transcriptional profiles derived from animal and cellular studies. Finally, this review will discuss possible mechanisms through which EDC exposure can lead to persistent changes in gene expression and phenotype, which may in turn contribute to transgenerational inheritance of ASD.


Assuntos
Transtorno do Espectro Autista/etiologia , Disruptores Endócrinos/toxicidade , Exposição Ambiental/efeitos adversos , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/epidemiologia , Criança , Disruptores Endócrinos/efeitos adversos , Exposição Ambiental/estatística & dados numéricos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Interação Gene-Ambiente , Hormônios/fisiologia , Humanos , Padrões de Herança/efeitos dos fármacos , Padrões de Herança/genética , Fatores de Risco
6.
Biol Sex Differ ; 15(1): 40, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750585

RESUMO

BACKGROUND: Recent studies have shown that prenatal BPA exposure altered the transcriptome profiles of autism-related genes in the offspring's hippocampus, disrupting hippocampal neuritogenesis and causing male-specific deficits in learning. However, the sex differences in the effects of prenatal BPA exposure on the developing prefrontal cortex, which is another brain region highly implicated in autism spectrum disorder (ASD), have not been investigated. METHODS: We obtained transcriptome data from RNA sequencing analysis of the prefrontal cortex of male and female rat pups prenatally exposed to BPA or control and reanalyzed. BPA-responsive genes associated with cortical development and social behaviors were selected for confirmation by qRT-PCR analysis. Neuritogenesis of primary cells from the prefrontal cortex of pups prenatally exposed to BPA or control was examined. The social behaviors of the pups were assessed using the two-trial and three-chamber tests. The male-specific impact of the downregulation of a selected BPA-responsive gene (i.e., Sema5a) on cortical development in vivo was interrogated using siRNA-mediated knockdown by an in utero electroporation technique. RESULTS: Genes disrupted by prenatal BPA exposure were associated with ASD and showed sex-specific dysregulation. Sema5a and Slc9a9, which were involved in neuritogenesis and social behaviors, were downregulated only in males, while Anxa2 and Junb, which were also linked to neuritogenesis and social behaviors, were suppressed only in females. Neuritogenesis was increased in males and showed a strong inverse correlation with Sema5a and Slc9a9 expression levels, whereas, in the females, neuritogenesis was decreased and correlated with Anxa2 and Junb levels. The siRNA-mediated knockdown of Sema5a in males also impaired cortical development in utero. Consistent with Anxa2 and Junb downregulations, deficits in social novelty were observed only in female offspring but not in males. CONCLUSION: This is the first study to show that prenatal BPA exposure dysregulated the expression of ASD-related genes and functions, including cortical neuritogenesis and development and social behaviors, in a sex-dependent manner. Our findings suggest that, besides the hippocampus, BPA could also exert its adverse effects through sex-specific molecular mechanisms in the offspring's prefrontal cortex, which in turn would lead to sex differences in ASD-related neuropathology and clinical manifestations, which deserves further investigation.


Assuntos
Compostos Benzidrílicos , Fenóis , Córtex Pré-Frontal , Efeitos Tardios da Exposição Pré-Natal , Caracteres Sexuais , Comportamento Social , Animais , Feminino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Fenóis/toxicidade , Fenóis/efeitos adversos , Masculino , Compostos Benzidrílicos/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Transtorno Autístico/genética , Transtorno Autístico/induzido quimicamente , Ratos Sprague-Dawley , Ratos , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/genética
7.
Child Dev ; 84(1): 89-103, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22497667

RESUMO

Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that affect an estimated 1 in 110 individuals. Although there is a strong genetic component associated with these disorders, this review focuses on the multifactorial nature of ASD and how different genome-wide (genomic) approaches contribute to our understanding of autism. Emphasis is placed on the need to study defined ASD phenotypes as well as to integrate large-scale "omics" data in order to develop a "systems-level" perspective of ASD, which in turn is necessary to allow predictions regarding responses to specific perturbations and interventions.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Meio Ambiente , Criança , Metilação de DNA/genética , Perfilação da Expressão Gênica , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genômica , Hormônios Esteroides Gonadais/fisiologia , Humanos , MicroRNAs/genética , Vias Neurais/fisiologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Fenótipo , Transcriptoma/genética
8.
Sci Rep ; 13(1): 7225, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142620

RESUMO

Glutamate-induced neurotoxicity in the HT22 mouse hippocampal neuronal cell line has been recognized as a valuable cell model for the study of neurotoxicity associated with neurodegenerative diseases including Alzheimer's disease (AD). However, the relevance of this cell model for AD pathogenesis and preclinical drug screening remains to be more elucidated. While there is increasing use of this cell model in a number of studies, relatively little is known about its underlying molecular signatures in relation to AD. Here, our RNA sequencing study provides the first transcriptomic and network analyses of HT22 cells following glutamate exposure. Several differentially expressed genes (DEGs) and their relationships specific to AD were identified. Additionally, the usefulness of this cell model as a drug screening system was assessed by determining the expression of those AD-associated DEGs in response to two medicinal plant extracts, Acanthus ebracteatus and Streblus asper, that have been previously shown to be protective in this cell model. In summary, the present study reports newly identified AD-specific molecular signatures in glutamate-injured HT22 cells, suggesting that this cell can be a valuable model system for the screening and evaluation of new anti-AD agents, particularly from natural products.


Assuntos
Doença de Alzheimer , Ácido Glutâmico , Camundongos , Animais , Ácido Glutâmico/toxicidade , Ácido Glutâmico/metabolismo , Estresse Oxidativo/fisiologia , Transcriptoma , Neurônios/metabolismo , Linhagem Celular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo
9.
Biol Sex Differ ; 14(1): 8, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803626

RESUMO

BACKGROUND: Bisphenol A (BPA) has been linked to susceptibility to autism spectrum disorder (ASD). Our recent studies have shown that prenatal BPA exposure disrupted ASD-related gene expression in the hippocampus, neurological functions, and behaviors associated with ASD in a sex-specific pattern. However, the molecular mechanisms underlying the effects of BPA are still unclear. METHODS: Transcriptome data mining and molecular docking analyses were performed to identify ASD-related transcription factors (TFs) and their target genes underlying the sex-specific effects of prenatal BPA exposure. Gene ontology analysis was conducted to predict biological functions associated with these genes. The expression levels of ASD-related TFs and targets in the hippocampus of rat pups prenatally exposed to BPA were measured using qRT-PCR analysis. The role of the androgen receptor (AR) in BPA-mediated regulation of ASD candidate genes was investigated using a human neuronal cell line stably transfected with AR-expression or control plasmid. Synaptogenesis, which is a function associated with genes transcriptionally regulated by ASD-related TFs, was assessed using primary hippocampal neurons isolated from male and female rat pups prenatally exposed to BPA. RESULTS: We found that there was a sex difference in ASD-related TFs underlying the effects of prenatal BPA exposure on the transcriptome profiles of the offspring hippocampus. In addition to the known BPA targets AR and ESR1, BPA could directly interact with novel targets (i.e., KDM5B, SMAD4, and TCF7L2). The targets of these TFs were also associated with ASD. Prenatal BPA exposure disrupted the expression of ASD-related TFs and targets in the offspring hippocampus in a sex-dependent manner. Moreover, AR was involved in the BPA-mediated dysregulation of AUTS2, KMT2C, and SMARCC2. Prenatal BPA exposure altered synaptogenesis by increasing synaptic protein levels in males but not in females, but the number of excitatory synapses was increased in female primary neurons only. CONCLUSIONS: Our findings suggest that AR and other ASD-related TFs are involved in sex differences in the effects of prenatal BPA exposure on transcriptome profiles and synaptogenesis in the offspring hippocampus. These TFs may play an essential role in an increased ASD susceptibility associated with endocrine-disrupting chemicals, particularly BPA, and the male bias of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Gravidez , Ratos , Animais , Feminino , Masculino , Humanos , Transcriptoma , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/genética , Caracteres Sexuais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Simulação de Acoplamento Molecular , Hipocampo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/farmacologia
10.
Sci Rep ; 12(1): 13970, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978033

RESUMO

Long interspersed nucleotide element-1 (LINE-1) and Alu elements are retrotransposons whose abilities cause abnormal gene expression and genomic instability. Several studies have focused on DNA methylation profiling of gene regions, but the locus-specific methylation of LINE-1 and Alu elements has not been identified in autism spectrum disorder (ASD). Here we interrogated locus- and family-specific methylation profiles of LINE-1 and Alu elements in ASD whole blood using publicly-available Illumina Infinium 450 K methylation datasets from heterogeneous ASD and ASD variants (Chromodomain Helicase DNA-binding 8 (CHD8) and 16p11.2del). Total DNA methylation of repetitive elements were notably hypomethylated exclusively in ASD with CHD8 variants. Methylation alteration in a family-specific manner including L1P, L1H, HAL, AluJ, and AluS families were observed in the heterogeneous ASD and ASD with CHD8 variants. Moreover, LINE-1 and Alu methylation within target genes is inversely related to the expression level in each ASD variant. The DNA methylation signatures of the LINE-1 and Alu elements in ASD whole blood, as well as their associations with the expression of ASD-related genes, have been identified. If confirmed in future larger studies, these findings may contribute to the identification of epigenomic biomarkers of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Elementos Alu/genética , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Metilação de DNA , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética
11.
Front Genet ; 13: 929471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035158

RESUMO

Environmental exposures to endocrine disrupting compounds (EDCs) such as the organochlorines have been linked with various diseases including neurodevelopmental disorders. Autism spectrum disorder (ASD) is a highly complex neurodevelopmental disorder that is considered strongly genetic in origin due to its high heritability. However, the rapidly rising prevalence of ASD suggests that environmental factors may also influence risk for ASD. In the present study, whole genome bisulfite sequencing was used to identify genome-wide differentially methylated regions (DMRs) in a total of 52 sperm samples from a cohort of men from the Faroe Islands (Denmark) who were equally divided into high and low exposure groups based on their serum levels of the long-lived organochlorine 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE), a primary breakdown product of the now banned insecticide dichlorodiphenyltrichloroethane (DDT). Aside from being considered a genetic isolate, inhabitants of the Faroe Islands have a native diet that potentially exposes them to a wide range of seafood neurotoxicants in the form of persistent organic pollutants (POPs). The DMRs were mapped to the human genome using Bismark, a 3-letter aligner used for methyl-seq analyses. Gene ontology, functional, and pathway analyses of the DMR-associated genes showed significant enrichment for genes involved in neurological functions and neurodevelopmental processes frequently impacted by ASD. Notably, these genes also significantly overlap with autism risk genes as well as those previously identified in sperm from fathers of children with ASD in comparison to that of fathers of neurotypical children. These results collectively suggest a possible mechanism involving altered methylation of a significant number of neurologically relevant ASD risk genes for introducing epigenetic changes associated with environmental exposures into the sperm methylome. Such changes may provide the potential for transgenerational inheritance of ASD as well as other disorders.

12.
FASEB J ; 24(8): 3036-51, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20375269

RESUMO

Autism is currently considered a multigene disorder with epigenetic influences. To investigate the contribution of DNA methylation to autism spectrum disorders, we have recently completed large-scale methylation profiling by CpG island microarray analysis of lymphoblastoid cell lines derived from monozygotic twins discordant for diagnosis of autism and their nonautistic siblings. Methylation profiling revealed many candidate genes differentially methylated between discordant MZ twins as well as between both twins and nonautistic siblings. Bioinformatics analysis of the differentially methylated genes demonstrated enrichment for high-level functions including gene transcription, nervous system development, cell death/survival, and other biological processes implicated in autism. The methylation status of 2 of these candidate genes, BCL-2 and retinoic acid-related orphan receptor alpha (RORA), was further confirmed by bisulfite sequencing and methylation-specific PCR, respectively. Immunohistochemical analyses of tissue arrays containing slices of the cerebellum and frontal cortex of autistic and age- and sex-matched control subjects revealed decreased expression of RORA and BCL-2 proteins in the autistic brain. Our data thus confirm the role of epigenetic regulation of gene expression via differential DNA methylation in idiopathic autism, and furthermore link molecular changes in a peripheral cell model with brain pathobiology in autism.


Assuntos
Química Encefálica , Transtornos Globais do Desenvolvimento Infantil/genética , Metilação de DNA , Epigênese Genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Linhagem Celular , Criança , Predisposição Genética para Doença , Humanos , Linfócitos/citologia , Masculino , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/deficiência
13.
Autism ; 25(4): 887-910, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33256464

RESUMO

LAY ABSTRACT: This study investigates altered DNA methylation that may contribute to autism spectrum disorders. DNA methylation is an epigenetic mechanism for regulating the level at which genes are expressed, and is thus complementary to genetics and gene expression analyses which look at the variations in gene structure and gene products in cells. Here, we identify DNA methylation differences between autistic and sex-matched non-autistic siblings, focusing on a subgroup of severely affected individuals with language impairment to reduce the clinical heterogeneity among the cases. Our results show significant differentially methylated genes between the sibling groups that are enriched in autism risk genes as well as in signaling and biochemical pathways previously associated with the pathobiology of autism spectrum disorders. Moreover, we show for the first time that these differences are in part sex dependent, with differentially methylated genes in females associated with pathways that implicate mitochondrial dysfunction and metabolic disorders that may offer some protection to females against autism spectrum disorders. Further investigations of sex differences are required to develop a fuller understanding of the pathobiology, gene regulatory mechanisms, and differential susceptibility of males and females toward autism spectrum disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Metilação de DNA/genética , Feminino , Humanos , Masculino , Redes e Vias Metabólicas/genética , Caracteres Sexuais
14.
Sci Rep ; 11(1): 1241, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441873

RESUMO

Our recent study has shown that prenatal exposure to bisphenol A (BPA) altered the expression of genes associated with autism spectrum disorder (ASD). In this study, we further investigated the effects of prenatal BPA exposure on ASD-related genes known to regulate neuronal viability, neuritogenesis, and learning/memory, and assessed these functions in the offspring of exposed pregnant rats. We found that prenatal BPA exposure increased neurite length, the number of primary neurites, and the number of neurite branches, but reduced the size of the hippocampal cell body in both sexes of the offspring. However, in utero exposure to BPA decreased the neuronal viability and the neuronal density in the hippocampus and impaired learning/memory only in the male offspring while the females were not affected. Interestingly, the expression of several ASD-related genes (e.g. Mief2, Eif3h, Cux1, and Atp8a1) in the hippocampus were dysregulated and showed a sex-specific correlation with neuronal viability, neuritogenesis, and/or learning/memory. The findings from this study suggest that prenatal BPA exposure disrupts ASD-related genes involved in neuronal viability, neuritogenesis, and learning/memory in a sex-dependent manner, and these genes may play an important role in the risk and the higher prevalence of ASD in males subjected to prenatal BPA exposure.


Assuntos
Transtorno do Espectro Autista/metabolismo , Compostos Benzidrílicos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Caracteres Sexuais , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Feminino , Hipocampo/patologia , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Wistar
15.
Front Neurol ; 11: 578972, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281715

RESUMO

Autism spectrum disorder (ASD) describes a collection of neurodevelopmental disorders characterized by core symptoms that include social communication deficits and repetitive, stereotyped behaviors often coupled with restricted interests. Primary challenges to understanding and treating ASD are the genetic and phenotypic heterogeneity of cases that complicates all omics analyses as well as a lack of information on relationships among genes, pathways, and autistic traits. In this study, we re-analyze existing transcriptomic data from simplex families by subtyping individuals with ASD according to multivariate cluster analyses of clinical ADI-R scores that encompass a broad range of behavioral symptoms. We also correlate multiple ASD traits, such as deficits in verbal and non-verbal communication, play and social skills, ritualistic behaviors, and savant skills, with expression profiles using Weighted Gene Correlation Network Analyses (WGCNA). Our results show that subtyping greatly enhances the ability to identify differentially expressed genes involved in specific canonical pathways and biological functions associated with ASD within each phenotypic subgroup. Moreover, using WGCNA, we identify gene modules that correlate significantly with specific ASD traits. Network prediction analyses of the genes in these modules reveal canonical pathways as well as neurological functions and disorders relevant to the pathobiology of ASD. Finally, we compare the WGCNA-derived data on autistic traits in simplex families with analogous data from multiplex families using transcriptomic data from our previous studies. The comparison reveals overlapping trait-associated pathways as well as upstream regulators of the module-associated genes that may serve as useful targets for a precision medicine approach to ASD.

16.
Sci Rep ; 10(1): 9487, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32528016

RESUMO

Our recent study revealed that prenatal exposure to bisphenol A (BPA) disrupted the transcriptome profiles of genes in the offspring hippocampus. In addition to genes linked to autism, several genes associated with Alzheimer's disease (AD) were found to be differentially expressed, although the association between BPA-responsive genes and AD-related genes has not been thoroughly investigated. Here, we demonstrated that in utero BPA exposure also disrupted the transcriptome profiles of genes associated with neuroinflammation and AD in the hippocampus. The level of NF-κB protein and its AD-related target gene Bace1 were significantly increased in the offspring hippocampus in a sex-dependent manner. Quantitative RT-PCR analysis also showed an increase in the expression of Tnf gene. Moreover, the reanalysis of transcriptome profiling data from several previously published BPA studies consistently showed that BPA-responsive genes were significantly associated with top AD candidate genes. The findings from this study suggest that maternal BPA exposure may increase AD risk in offspring by dysregulating genes associated with AD neuropathology and inflammation and reveal a possible relationship between AD and autism, which are linked to the same environmental factor. Sex-specific effects of prenatal BPA exposure on the susceptibility of AD deserve further investigation.


Assuntos
Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/genética , Compostos Benzidrílicos/agonistas , Fenóis/agonistas , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Transcriptoma/efeitos dos fármacos , Animais , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/genética , Feminino , Perfilação da Expressão Gênica/métodos , Hipocampo/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/genética , Masculino , Exposição Materna , NF-kappa B/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Ratos , Ratos Wistar
17.
Sci Rep ; 9(1): 3038, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816183

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder inexplicably biased towards males. Although prenatal exposure to bisphenol A (BPA) has recently been associated with the ASD risk, whether BPA dysregulates ASD-related genes in the developing brain remains unclear. In this study, transcriptome profiling by RNA-seq analysis of hippocampi isolated from neonatal pups prenatally exposed to BPA was conducted and revealed a list of differentially expressed genes (DEGs) associated with ASD. Among the DEGs, several ASD candidate genes, including Auts2 and Foxp2, were dysregulated and showed sex differences in response to BPA exposure. The interactome and pathway analyses of DEGs using Ingenuity Pathway Analysis software revealed significant associations between the DEGs in males and neurological functions/disorders associated with ASD. Moreover, the reanalysis of transcriptome profiling data from previously published BPA studies consistently showed that BPA-responsive genes were significantly associated with ASD-related genes. The findings from this study indicate that prenatal BPA exposure alters the expression of ASD-linked genes in the hippocampus and suggest that maternal BPA exposure may increase ASD susceptibility by dysregulating genes associated with neurological functions known to be negatively impacted in ASD, which deserves further investigations.


Assuntos
Transtorno do Espectro Autista/genética , Compostos Benzidrílicos/toxicidade , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/genética , Animais , Animais Recém-Nascidos , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/patologia , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/metabolismo , Hipocampo/patologia , Humanos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , RNA-Seq , Ratos , Fatores Sexuais
18.
Mol Autism ; 9: 27, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686828

RESUMO

Background: Alu elements are a group of repetitive elements that can influence gene expression through CpG residues and transcription factor binding. Altered gene expression and methylation profiles have been reported in various tissues and cell lines from individuals with autism spectrum disorder (ASD). However, the role of Alu elements in ASD remains unclear. We thus investigated whether Alu elements are associated with altered gene expression profiles in ASD. Methods: We obtained five blood-based gene expression profiles from the Gene Expression Omnibus database and human Alu-inserted gene lists from the TranspoGene database. Differentially expressed genes (DEGs) in ASD were identified from each study and overlapped with the human Alu-inserted genes. The biological functions and networks of Alu-inserted DEGs were then predicted by Ingenuity Pathway Analysis (IPA). A combined bisulfite restriction analysis of lymphoblastoid cell lines (LCLs) derived from 36 ASD and 20 sex- and age-matched unaffected individuals was performed to assess the global DNA methylation levels within Alu elements, and the Alu expression levels were determined by quantitative RT-PCR. Results: In ASD blood or blood-derived cells, 320 Alu-inserted genes were reproducibly differentially expressed. Biological function and pathway analysis showed that these genes were significantly associated with neurodevelopmental disorders and neurological functions involved in ASD etiology. Interestingly, estrogen receptor and androgen signaling pathways implicated in the sex bias of ASD, as well as IL-6 signaling and neuroinflammation signaling pathways, were also highlighted. Alu methylation was not significantly different between the ASD and sex- and age-matched control groups. However, significantly altered Alu methylation patterns were observed in ASD cases sub-grouped based on Autism Diagnostic Interview-Revised scores compared with matched controls. Quantitative RT-PCR analysis of Alu expression also showed significant differences between ASD subgroups. Interestingly, Alu expression was correlated with methylation status in one phenotypic ASD subgroup. Conclusion: Alu methylation and expression were altered in LCLs from ASD subgroups. Our findings highlight the association of Alu elements with gene dysregulation in ASD blood samples and warrant further investigation. Moreover, the classification of ASD individuals into subgroups based on phenotypes may be beneficial and could provide insights into the still unknown etiology and the underlying mechanisms of ASD.


Assuntos
Elementos Alu , Transtorno do Espectro Autista/genética , Metilação de DNA , Epigênese Genética , Redes Reguladoras de Genes , Transcriptoma , Estudos de Casos e Controles , Células Cultivadas , Feminino , Genoma Humano , Humanos , Masculino
19.
BMC Genomics ; 7: 118, 2006 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-16709250

RESUMO

BACKGROUND: The autism spectrum encompasses a set of complex multigenic developmental disorders that severely impact the development of language, non-verbal communication, and social skills, and are associated with odd, stereotyped, repetitive behavior and restricted interests. To date, diagnosis of these neurologically based disorders relies predominantly upon behavioral observations often prompted by delayed speech or aberrant behavior, and there are no known genes that can serve as definitive biomarkers for the disorders. RESULTS: Here we demonstrate, for the first time, that lymphoblastoid cell lines from monozygotic twins discordant with respect to severity of autism and/or language impairment exhibit differential gene expression patterns on DNA microarrays. Furthermore, we show that genes important to the development, structure, and/or function of the nervous system are among the most differentially expressed genes, and that many of these genes map closely in silico to chromosomal regions containing previously reported autism candidate genes or quantitative trait loci. CONCLUSION: Our results provide evidence that novel candidate genes for autism may be differentially expressed in lymphoid cell lines from individuals with autism spectrum disorders. This finding further suggests the possibility of developing a molecular screen for autism based on expressed biomarkers in peripheral blood lymphocytes, an easily accessible tissue. In addition, gene networks are identified that may play a role in the pathophysiology of autism.


Assuntos
Transtorno Autístico/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Linhagem Celular , Mapeamento Cromossômico , Humanos , Inflamação/genética , Linfócitos/citologia , Linfócitos/fisiologia , Locos de Características Quantitativas , Índice de Gravidade de Doença , Gêmeos Monozigóticos
20.
Curr Behav Neurosci Rep ; 3(3): 264-274, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28093577

RESUMO

PURPOSE OF REVIEW: Evidence has linked neuropsychiatric disorders with epigenetic marks as either a biomarker of disease, biomarker of exposure, or mechanism of disease processes. Neuropsychiatric epidemiologic studies using either target brain tissue or surrogate blood tissue each have methodological challenges and distinct advantages. RECENT FINDINGS: Brain tissue studies are challenged by small sample sizes of cases and controls, incomplete phenotyping, post-mortem timing, and cellular heterogeneity, but the use of a primary disease relevant tissue is critical. Blood-based studies have access to much larger sample sizes and more replication opportunities, as well as the potential for longitudinal measurements, both prior to onset and during the course of treatments. Yet, blood studies also are challenged by cell-type heterogeneity, and many question the validity of using peripheral tissues as a brain biomarker. Emerging evidence suggests that these limitations to blood-based epigenetic studies are surmountable, but confirmation in target tissue remains important. SUMMARY: Epigenetic mechanisms have the potential to help elucidate biology connecting experiential risk factors with neuropsychiatric disease manifestation. Cross-tissue studies as well as advanced epidemiologic methods should be employed to more effectively conduct neuropsychiatric epigenetic research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA