Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 165(7): 1672-1685, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27315481

RESUMO

Long intergenic noncoding RNAs (lincRNAs) are important regulators of gene expression. Although lincRNAs are expressed in immune cells, their functions in immunity are largely unexplored. Here, we identify an immunoregulatory lincRNA, lincRNA-EPS, that is precisely regulated in macrophages to control the expression of immune response genes (IRGs). Transcriptome analysis of macrophages from lincRNA-EPS-deficient mice, combined with gain-of-function and rescue experiments, revealed a specific role for this lincRNA in restraining IRG expression. Consistently, lincRNA-EPS-deficient mice manifest enhanced inflammation and lethality following endotoxin challenge in vivo. lincRNA-EPS localizes at regulatory regions of IRGs to control nucleosome positioning and repress transcription. Further, lincRNA-EPS mediates these effects by interacting with heterogeneous nuclear ribonucleoprotein L via a CANACA motif located in its 3' end. Together, these findings identify lincRNA-EPS as a repressor of inflammatory responses, highlighting the importance of lincRNAs in the immune system.


Assuntos
Regulação da Expressão Gênica , Inflamação/genética , Macrófagos/imunologia , RNA Longo não Codificante/metabolismo , Animais , Cromátides/metabolismo , Deleção de Genes , Humanos , Listeria monocytogenes/fisiologia , Listeriose/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Longo não Codificante/genética , Infecções por Respirovirus/imunologia , Vírus Sendai/fisiologia , Receptores Toll-Like/metabolismo , Transcriptoma
2.
PLoS Biol ; 21(2): e3001947, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36757932

RESUMO

Congenital hydrocephalus (CH) is a common neurological disorder affecting many newborns. Imbalanced neurogenesis is a major cause of CH. Multiple CH-associated mutations are within the RNA-binding domain of Trim71, a conserved, stem cell-specific RNA-binding protein. How these mutations alter stem cell fate is unclear. Here, we show that the CH-associated mutations R595H and R783H in Trim71 accelerate differentiation and enhance neural lineage commitment in mouse embryonic stem cells (mESCs), and reduce binding to mRNAs targeted by wild-type Trim71, consistent with previous reports. Unexpectedly, however, each mutant binds an ectopic and distinct repertoire of target mRNAs. R595H-Trim71, but not R783H-Trim71 nor wild-type Trim71, binds the mRNA encoding ß-catenin and represses its translation. Increasing ß-catenin by overexpression or treatment with a Wnt agonist specifically restores differentiation of R595H-Trim71 mESCs. These results suggest that Trim71 mutations give rise to unique gain-of-function pathological mechanisms in CH. Further, our studies suggest that disruption of the Wnt/ß-catenin signaling pathway can be used to stratify disease etiology and develop precision medicine approaches for CH.


Assuntos
Hidrocefalia , beta Catenina , Animais , Camundongos , beta Catenina/genética , Mutação com Ganho de Função , Diferenciação Celular/genética , Mutação/genética , Hidrocefalia/genética , Via de Sinalização Wnt/genética
3.
RNA ; 29(10): 1453-1457, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37414463

RESUMO

RNA-binding proteins (RBPs) are critical regulators of gene expression. An RBP typically binds to multiple mRNAs and modulates their expression. Although loss-of-function experiments on an RBP can infer how it regulates a specific target mRNA, the results are confounded by potential secondary effects due to the attenuation of all other interactions of the target RBP. For example, regarding the interaction between Trim71, an evolutionarily conserved RBP, and Ago2 mRNA, although Trim71 binds to Ago2 mRNA and overexpression of Trim71 represses Ago2 mRNA translation, it is puzzling that AGO2 protein levels are not altered in the Trim71 knockdown/knockout cells. To address this, we adapted the dTAG (degradation tag) system for determining the direct effects of the endogenous Trim71. Specifically, we knocked in the dTAG to the Trim71 locus, enabling inducible rapid Trim71 protein degradation. We observed that following the induction of Trim71 degradation, Ago2 protein levels first increased, confirming the Trim71-mediated repression, and then returned to the original levels after 24 h post-induction, revealing that the secondary effects from the Trim71 knockdown/knockout counteracted its direct effects on Ago2 mRNA. These results highlight a caveat in interpreting the results from loss-of-function studies on RBPs and provide a method to determine the primary effect(s) of RBPs on their target mRNAs.


Assuntos
Biossíntese de Proteínas , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
EMBO Rep ; 24(2): e55843, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36573342

RESUMO

Congenital hydrocephalus (CH) is a major cause of childhood morbidity. Mono-allelic mutations in Trim71, a conserved stem-cell-specific RNA-binding protein, cause CH; however, the molecular basis for pathogenesis mediated by these mutations remains unknown. Here, using mouse embryonic stem cells as a model, we reveal that the mouse R783H mutation (R796H in human) alters Trim71's mRNA substrate specificity and leads to accelerated stem-cell differentiation and neural lineage commitment. Mutant Trim71, but not wild-type Trim71, binds Lsd1 (Kdm1a) mRNA and represses its translation. Specific inhibition of this repression or a slight increase of Lsd1 in the mutant cells alleviates the defects in stem cell differentiation and neural lineage commitment. These results determine a functionally relevant target of the CH-causing Trim71 mutant that can potentially be a therapeutic target and provide molecular mechanistic insights into the pathogenesis of this disease.


Assuntos
Hidrocefalia , Proteínas com Motivo Tripartido , Animais , Humanos , Camundongos , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Hidrocefalia/genética , Células-Tronco Embrionárias Murinas/metabolismo , Mutação , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
BMC Cancer ; 24(1): 729, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877481

RESUMO

BACKGROUND: Chondroitin sulfate proteoglycan 4 pseudogene 12 (CSPG4P12) has been implicated in the pathogenesis of various cancers. This study aimed to evaluate the association of the CSPG4P12 polymorphism with esophageal squamous cell carcinoma (ESCA) risk and to explore the biological impact of CSPG4P12 expression on ESCA cell behavior. METHODS: A case-control study was conducted involving 480 ESCA patients and 480 healthy controls to assess the association between the rs8040855 polymorphism and ESCA risk. The CSPG4P12 rs8040855 genotype was identified using the TaqMan-MGB probe method. Logistic regression model was used to evaluate the association of CSPG4P12 SNP with the risk of ESCA by calculating the odds ratios (OR) and 95% confidence intervals (95%CI ). The effects of CSPG4P12 overexpression on cell proliferation, migration, and invasion were examined in ESCA cell lines. Co-expressed genes were identified via the CBioportal database, with pathway enrichment analyzed using SangerBox. The binding score of CSPG4P12 to P53 was calculated using RNA protein interaction prediction (RPISeq). Additionally, Western Blot analysis was performed to investigate the impact of CSPG4P12 overexpression on the P53/PI3K/AKT signaling pathway. RESULTS: The presence of at least one rs8040855 G allele was associated with a reduced susceptibility to ESCA compared to the CC genotype (OR = 0.51, 95%CI = 0.28-0.93, P = 0.03). Stratification analysis revealed that the CSPG4P12 rs8040855 C allele significantly decreased the risk of ESCA among younger individuals (≤ 57 years) and non-drinkers (OR = 0.31, 95%CI = 0.12-0.77, P = 0.01; OR = 0.42, 95%CI=0.20-0.87, P = 0.02, respectively). CSPG4P12 expression was found to be downregulated in ESCA tissues compared to adjacent normal tissues. Overexpression of CSPG4P12 in ESCA cells inhibited their proliferation, migration, and invasion capabilities. Furthermore, Western Blot analysis indicated that CSPG4P12 overexpression led to a reduction in PI3K and p-AKT protein expression levels. P53 silencing rescues the inhibitory effect of CSPG4P12 on p-AKT. CONCLUSION: The CSPG4P12 rs8040855 variant is associated with reduced ESCA risk and the overexpression of CSPG4P12 inhibited the migration and invasion of ESCA cells by P53/PI3K/AKT pathway. These findings suggest that CSPG4P12 may serve as a novel biomarker for ESCA susceptibility and a potential target for therapeutic intervention.


Assuntos
Proteoglicanas de Sulfatos de Condroitina , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Predisposição Genética para Doença , Proteínas de Membrana , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , China/epidemiologia , Proteoglicanas de Sulfatos de Condroitina/genética , População do Leste Asiático , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Genótipo , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único , Transdução de Sinais
6.
Virol J ; 21(1): 2, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172898

RESUMO

Only few studies have investigated the prevalence of feline coronavirus (FCoV) infection in domestic cats in Fujian, China. This is the first study to report the prevalence rate of FCoV infection in domestic cats in Fujian, China, and to analyse the epidemiological characteristics of FCoV infection in the region. A total of 112 cat faecal samples were collected from animal hospitals and catteries in the Fujian Province. RNA was extracted from faecal material for reverse transcription polymerase chain reaction (RT-PCR). The prevalence rate of FCoV infection was determined, and its epidemiological risk factors were analysed. The overall prevalence of FCoV infection in the cats, was 67.9%. We did not observe a significant association between the age, sex, or breed of the cats included in the study and the prevalence rate of the viral infection. Phylogenetic analysis showed that the four strains from Fujian were all type I FCoV. This is the first study to analyse the prevalence and epidemiological characteristics of FCoV infection in domestic cats in Fujian, China, using faecal samples. The results of this study provide preliminary data regarding the prevalence of FCoV infection in the Fujian Province for epidemiological studies on FCoV in China and worldwide. Future studies should perform systematic and comprehensive epidemiological investigations to determine the prevalence of FCoV infection in the region.


Assuntos
Infecções por Coronavirus , Coronavirus Felino , Peritonite Infecciosa Felina , Gatos , Animais , Peritonite Infecciosa Felina/epidemiologia , Peritonite Infecciosa Felina/genética , Prevalência , Filogenia , RNA Viral/genética , RNA Viral/análise , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Coronavirus Felino/genética , China/epidemiologia
7.
Blood ; 132(24): 2564-2574, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30257881

RESUMO

The mechanistic target of rapamycin (mTOR) is a central regulator of cellular proliferation and metabolism. Depending on its binding partners, mTOR is at the core of 2 complexes that either promote protein biosynthesis (mTOR complex 1; mTORC1) or provide survival and proliferation signals (mTORC2). Protein biosynthesis downstream of mTORC1 plays an important role in MYC-driven oncogenesis with translation inhibitors garnering increasing therapeutic attention. The germinal center B-cell oncogene UCHL1 encodes a deubiquitinating enzyme that regulates the balance between mTOR complexes by disrupting mTORC1 and promoting mTORC2 assembly. While supporting mTORC2-dependent growth and survival signals may contribute to its role in cancer, the suppression of mTORC1 activity is enigmatic, as its phosphorylation of its substrate 4EBP1 promotes protein biosynthesis. To address this, we used proximity-based proteomics to identify molecular complexes with which UCH-L1 associates in malignant B cells. We identified a novel association of UCH-L1 with the translation initiation complex eIF4F, the target of 4EBP1. UCH-L1 associates with and promotes the assembly of eIF4F and stimulates protein synthesis through a mechanism that requires its catalytic activity. Because of the importance of mTOR in MYC-driven oncogenesis, we used novel mutant Uchl1 transgenic mice and found that catalytic activity is required for its acceleration of lymphoma in the Eµ-myc model. Further, we demonstrate that mice lacking UCH-L1 are resistant to MYC-induced lymphomas. We conclude that UCH-L1 bypasses the need for mTORC1-dependent protein synthesis by directly promoting translation initiation, and that this mechanism may be essential for MYC in B-cell malignancy.


Assuntos
Transformação Celular Neoplásica/metabolismo , Linfoma de Células B/metabolismo , Proteínas de Neoplasias/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Linfoma de Células B/genética , Linfoma de Células B/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Fosforilação , Serina-Treonina Quinases TOR/genética , Ubiquitina Tiolesterase/genética
8.
Methods ; 155: 49-57, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30527764

RESUMO

RNA-binding proteins are important players in post-transcriptional regulation, such as modulating mRNA splicing, translation, and degradation under diverse biological settings. Identifying and characterizing the RNA substrates is a critical step in deciphering the function and molecular mechanisms of the target RNA-binding proteins. High-throughput sequencing of the RNA fragments isolated by crosslinking immunoprecipitation (CLIP-seq) is one of the standard techniques to identify the in vivo transcriptome-wide binding sites of the target RNA-binding protein. This method is widely used in functional and mechanistic characterizations of RNA-binding proteins. In this review, we provide several practical considerations on performing and analyzing CLIP-seq experiments. Particularly, we focus on how to perform CLIP-seq experiments on endogenous RNA-binding proteins. In addition, we provide a practical summary on how to choose and use computational pipelines from an increasing number of computational methods and packages that are available for analyzing the sequencing datasets from the CLIP-seq experiments. We hope these practical considerations will facilitate experimental biologists in performing and analyzing CLIP-seq experiment to obtain biologically relevant mechanistic insights.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunoprecipitação/métodos , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/genética , RNA/genética , Transcriptoma , Reagentes de Ligações Cruzadas/química , Conjuntos de Dados como Assunto , Humanos , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de RNA , Software
9.
Blood ; 129(5): 619-629, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-27899360

RESUMO

Cell development requires tight yet dynamic control of protein production. Here, we use parallel RNA and ribosome profiling to study translational regulatory dynamics during murine terminal erythropoiesis. Our results uncover pervasive translational control of protein synthesis, with widespread alternative translation initiation and termination, robust discrimination of long noncoding from micropeptide-encoding RNAs, and dynamic use of upstream open reading frames. Further, we identify hundreds of messenger RNAs (mRNAs) whose translation efficiency is dynamically controlled during erythropoiesis and that enrich for target sites of RNA-binding proteins that are specific to hematopoietic cells, thus unraveling potential regulators of erythroid translational programs. A major such program involves enhanced decoding of specific mRNAs that are depleted in terminally differentiating/enucleating cells with decreasing transcriptional capacity. We find that RBM38, an erythroid-specific RNA-binding protein previously implicated in splicing, interacts with the general translation initiation factor eIF4G and promotes translation of a subset of these irreplaceable mRNAs. Inhibition of RBM38 compromises translation in erythroblasts and impairs their maturation, highlighting a key function for this protein during erythropoiesis. These findings thus reveal critical roles for dynamic translational control in supporting specialized mammalian cell formation.


Assuntos
Células Eritroides/citologia , Eritropoese , Biossíntese de Proteínas , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Eritroides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Fases de Leitura Aberta , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Genes Dev ; 25(24): 2573-8, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22155924

RESUMO

Long noncoding RNAs (lncRNAs) are differentially expressed under both normal and pathological conditions, implying that they may play important biological functions. Here we examined the expression of lncRNAs during erythropoiesis and identified an erythroid-specific lncRNA with anti-apoptotic activity. Inhibition of this lncRNA blocks erythroid differentiation and promotes apoptosis. Conversely, ectopic expression of this lncRNA can inhibit apoptosis in mouse erythroid cells. This lncRNA represses expression of Pycard, a proapoptotic gene, explaining in part the inhibition of programmed cell death. These findings reveal a novel layer of regulation of cell differentiation and apoptosis by a lncRNA.


Assuntos
Apoptose , Diferenciação Celular , Células Eritroides/citologia , Eritropoese/genética , Regulação da Expressão Gênica no Desenvolvimento , RNA não Traduzido/metabolismo , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose , Proteínas Adaptadoras de Sinalização CARD , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Células Eritroides/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL
11.
Blood ; 123(4): 570-81, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24200680

RESUMO

Erythropoiesis is regulated at multiple levels to ensure the proper generation of mature red cells under multiple physiological conditions. To probe the contribution of long noncoding RNAs (lncRNAs) to this process, we examined >1 billion RNA-seq reads of polyadenylated and nonpolyadenylated RNA from differentiating mouse fetal liver red blood cells and identified 655 lncRNA genes including not only intergenic, antisense, and intronic but also pseudogene and enhancer loci. More than 100 of these genes are previously unrecognized and highly erythroid specific. By integrating genome-wide surveys of chromatin states, transcription factor occupancy, and tissue expression patterns, we identify multiple lncRNAs that are dynamically expressed during erythropoiesis, show epigenetic regulation, and are targeted by key erythroid transcription factors GATA1, TAL1, or KLF1. We focus on 12 such candidates and find that they are nuclear-localized and exhibit complex developmental expression patterns. Depleting them severely impaired erythrocyte maturation, inhibiting cell size reduction and subsequent enucleation. One of them, alncRNA-EC7, is transcribed from an enhancer and is specifically needed for activation of the neighboring gene encoding BAND 3. Our study provides an annotated catalog of erythroid lncRNAs, readily available through an online resource, and shows that diverse types of lncRNAs participate in the regulatory circuitry underlying erythropoiesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Eritrócitos/citologia , Fator de Transcrição GATA1/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Longo não Codificante , Animais , Núcleo Celular/metabolismo , Elementos Facilitadores Genéticos , Epigênese Genética , Células Eritroides/citologia , Eritropoese/genética , Perfilação da Expressão Gênica , Genoma , Humanos , Hibridização in Situ Fluorescente , Células K562 , Fígado/metabolismo , Camundongos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Retroviridae/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Fatores de Transcrição
12.
Nature ; 461(7261): 225-9, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19701183

RESUMO

The rates of RNA decay and transcription determine the steady-state levels of all messenger RNA and both can be subject to regulation. Although the details of transcriptional regulation are becoming increasingly understood, the mechanism(s) controlling mRNA decay remain unclear. In yeast, a major pathway of mRNA decay begins with deadenylation followed by decapping and 5'-3' exonuclease digestion. Importantly, it is hypothesized that ribosomes must be removed from mRNA before transcripts are destroyed. Contrary to this prediction, here we show that decay takes place while mRNAs are associated with actively translating ribosomes. The data indicate that dissociation of ribosomes from mRNA is not a prerequisite for decay and we suggest that the 5'-3' polarity of mRNA degradation has evolved to ensure that the last translocating ribosome can complete translation.


Assuntos
Biossíntese de Proteínas , Estabilidade de RNA , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Poli A/metabolismo , Poliadenilação , Polirribossomos/metabolismo , Capuzes de RNA/metabolismo , RNA Fúngico/genética , RNA Mensageiro/genética
13.
EMBO Rep ; 13(11): 971-83, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23070366

RESUMO

Differentiation of specialized cell types from stem and progenitor cells is tightly regulated at several levels, both during development and during somatic tissue homeostasis. Many long non-coding RNAs have been recognized as an additional layer of regulation in the specification of cellular identities; these non-coding species can modulate gene-expression programmes in various biological contexts through diverse mechanisms at the transcriptional, translational or messenger RNA stability levels. Here, we summarize findings that implicate long non-coding RNAs in the control of mammalian cell differentiation. We focus on several representative differentiation systems and discuss how specific long non-coding RNAs contribute to the regulation of mammalian development.


Assuntos
Diferenciação Celular , RNA Longo não Codificante/metabolismo , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mamíferos , RNA Longo não Codificante/classificação , RNA Longo não Codificante/genética
14.
Mitochondrial DNA B Resour ; 9(6): 738-742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881576

RESUMO

The present study firstly reported a complete mitochondrial genome of Minois paupera (Alphéraky, 1888), a Satyrinae species endemic to China. This mitogenome is circular, 15,213 bp in length, and consists of 37 typical mitochondrial genes, including 13 protein-coding genes (PCGs), 22 tRNAs, and two rRNAs. The phylogenetic position was inferred using 31 previously published complete mitogenomes, and the results reveal that M. paupera is the most closely related to Minois dryas. The complete mitogenome of M. paupera provides useful genetic information for further research on the phylogeography and phylogeny of the genus Minois.

15.
Dev Cell ; 59(8): 979-990.e5, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38458189

RESUMO

Argonaute (AGO) proteins are evolutionarily conserved RNA-binding proteins that control gene expression through the small RNAs they interact with. Whether AGOs have regulatory roles independent of RNAs, however, is unknown. Here, we show that AGO1 controls cell fate decisions through facilitating protein folding. We found that in mouse embryonic stem cells (mESCs), while AGO2 facilitates differentiation via the microRNA (miRNA) pathway, AGO1 controls stemness independently of its binding to small RNAs. We determined that AGO1 specifically interacts with HOP, a co-chaperone for the HSP70 and HSP90 chaperones, and enhances the folding of a set of HOP client proteins with intrinsically disordered regions. This AGO1-mediated facilitation of protein folding is important for maintaining stemness in mESCs. Our results demonstrate divergent functions between AGO1 and AGO2 in controlling cellular states and identify an RNA-independent function of AGO1 in controlling gene expression and cell fate decisions.


Assuntos
Proteínas Argonautas , Diferenciação Celular , Células-Tronco Embrionárias Murinas , Dobramento de Proteína , Animais , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Linhagem da Célula
16.
Pathol Res Pract ; 242: 154318, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36701849

RESUMO

OBJECTIVES: WD repeat-containing protein 74 (WDR74) has been linked with the development of lung cancer. This study aims to investigate the relationship between WDR74 rs11231247 and non-small cell lung cancer (NSCLC) susceptibility and the prognosis of NSCLC patients. METHODS: UALCAN, MethPrimer, ensembl and Pancan meQTL databases were used for bioinformatics analysis. The case-control study included 462 NSCLC patients and 462 health controls. WDR74 rs11231247 genotype was determined by PCR-RFLP. Logistic regression model was used to calculate odds ratio (OR) and 95% confidence interval (95% CI) for analyzing the association of WDR74 SNP with the risk of NSCLC. Log-rank test and Cox regression analysis were used to evaluate the effect of WDR74 genetic variation on the prognosis of NSCLC. RESULTS: Compared with normal tissues, WDR74 expression level was higher and methylation level was lower in LUAD tissues. There were two CpG islands presented in the promoter of WDR74. And rs11231247 was in the second CpG island. We then discovered that rs11231247 CC and CT were more likely modified by methylation. LUAD case-control study demonstrated that rs11231247 CC genotype was associated with NSCLC risk with OR (95%CI) of 5.29 (2.59-10.79). Stratified analysis showed that rs11231247 T > C polymorphism could increase NSCLC risk in younger subjects (age≤58) (OR = 1.64, 95%CI = 1.06-2.54, P = 0.027). Survival analysis and Cox regression analysis showed rs11231247 CC genotype contributed to a poor prognosis of NSCLC patients (MST=21, HR=2.09, 95%CI=1.17-3.75). CONCLUSION: WDR74 rs11231247 polymorphism affected the risk and prognosis of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas de Ligação a RNA , Humanos , Pessoa de Meia-Idade , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos de Casos e Controles , Genótipo , Neoplasias Pulmonares/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Prognóstico , Proteínas de Ligação a RNA/genética
17.
Cell Host Microbe ; 31(10): 1655-1667.e6, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37738984

RESUMO

Gut microbiota and its symbiotic relationship with the host are crucial for preventing pathogen infection. However, little is known about the mechanisms that drive commensal colonization. Serratia bacteria, commonly found in Anopheles mosquitoes, potentially mediate mosquito resistance to Plasmodium. Using S. ureilytica Su_YN1 as a model, we show that a quorum sensing (QS) circuit is crucial for stable colonization. After blood ingestion, the QS synthase SueI generates the signaling molecule N-hexanoyl-L-homoserine lactone (C6-HSL). Once C6-HSL binds to the QS receptor SueR, repression of the phenylalanine-to-acetyl-coenzyme A (CoA) conversion pathway is lifted. This pathway regulates outer membrane vesicle (OMV) biogenesis and promotes Serratia biofilm-like aggregate formation, facilitating gut adaptation and colonization. Notably, exposing Serratia Su_YN1-carrying Anopheles mosquitoes to C6-HSL increases Serratia gut colonization and enhances Plasmodium transmission-blocking efficacy. These findings provide insights into OMV biogenesis and commensal gut colonization and identify a powerful strategy for enhancing commensal resistance to pathogens.

18.
Nat Commun ; 14(1): 5157, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620328

RESUMO

The gut microbiota is a crucial modulator of Plasmodium infection in mosquitoes, including the production of anti-Plasmodium effector proteins. But how the commensal-derived effectors are translocated into Plasmodium parasites remains obscure. Here we show that a natural Plasmodium blocking symbiotic bacterium Serratia ureilytica Su_YN1 delivers the effector lipase AmLip to Plasmodium parasites via outer membrane vesicles (OMVs). After a blood meal, host serum strongly induces Su_YN1 to release OMVs and the antimalarial effector protein AmLip into the mosquito gut. AmLip is first secreted into the extracellular space via the T1SS and then preferentially loaded on the OMVs that selectively target the malaria parasite, leading to targeted killing of the parasites. Notably, these serum-induced OMVs incorporate certain serum-derived lipids, such as phosphatidylcholine, which is critical for OMV uptake by Plasmodium via the phosphatidylcholine scavenging pathway. These findings reveal that this gut symbiotic bacterium evolved to deliver secreted effector molecules in the form of extracellular vesicles to selectively attack parasites and render mosquitoes refractory to Plasmodium infection. The discovery of the role of gut commensal-derived OMVs as carriers in cross-kingdom communication between mosquito microbiota and Plasmodium parasites offers a potential innovative strategy for blocking malaria transmission.


Assuntos
Culicidae , Parasitos , Plasmodium , Animais , Fosfatidilcolinas , Transporte Biológico
19.
Environ Sci Pollut Res Int ; 30(20): 58019-58029, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36973628

RESUMO

Reed is a typical emerged plant in constructed wetlands (CWs). Its litters were used as raw materials for preparing Fe-C ceramic-filler (Fe-C-CF). The physical and chemical properties of Fe-C-CF were studied under different conditions, including the mass ration of Fe to carbon (Fe/C ratio), sintering temperature, and time, to determine the optimum preparing conditions. Meanwhile, the denitrification performance and CO2 emission flux of the surface flow constructed wetland (SFCW) systems were investigated when using Fe-C-CF as the matrix. The optimum preparing conditions for Fe-C-CF were Fe/C ratio of 1:1, sintering temperature and time of 500 °C and 20 min, respectively. The SFCW system with Fe-C-CF obtained a higher total nitrogen (TN), nitrate nitrogen (NO3--N), and ammonia nitrogen (NH3-N) removal efficiencies than the control SFCW system without Fe-C-CF. Compared with the heterotrophic denitrification process, the SFCW system with Fe-C-CF decreased CO2 emission by 67.9 g m-2 per year. The results of microbial community analysis indicated that addition of Fe-C-CF increased the diversity and abundance of microbial communities in the SFCW systems. The dominant genus of the SFCW system with Fe-C-CF was Bacillus, while Uliginosibacterium was the dominant genus in the system without the filler.


Assuntos
Eliminação de Resíduos Líquidos , Áreas Alagadas , Eliminação de Resíduos Líquidos/métodos , Consórcios Microbianos , Dióxido de Carbono , Nitrogênio/análise , Desnitrificação
20.
Cell Death Dis ; 14(6): 384, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37385990

RESUMO

The widespread application of antiandrogen therapies has aroused a significant increase in the incidence of NEPC, a lethal form of the disease lacking efficient clinical treatments. Here we identified a cell surface receptor neurokinin-1 (NK1R) as a clinically relevant driver of treatment-related NEPC (tNEPC). NK1R expression increased in prostate cancer patients, particularly higher in metastatic prostate cancer and treatment-related NEPC, implying a relation with the progression from primary luminal adenocarcinoma toward NEPC. High NK1R level was clinically correlated with accelerated tumor recurrence and poor survival. Mechanical studies identified a regulatory element in the NK1R gene transcription ending region that was recognized by AR. AR inhibition enhanced the expression of NK1R, which mediated the PKCα-AURKA/N-Myc pathway in prostate cancer cells. Functional assays demonstrated that activation of NK1R promoted the NE transdifferentiation, cell proliferation, invasion, and enzalutamide resistance in prostate cancer cells. Targeting NK1R abrogated the NE transdifferentiation process and tumorigenicity in vitro and in vivo. These findings collectively characterized the role of NK1R in tNEPC progression and suggested NK1R as a potential therapeutic target.


Assuntos
Neoplasias da Próstata , Receptores da Neurocinina-1 , Masculino , Humanos , Receptores da Neurocinina-1/genética , Aurora Quinase A , Proteínas Proto-Oncogênicas c-myc/genética , Proteína Quinase C-alfa , Transdução de Sinais , Recidiva Local de Neoplasia , Neoplasias da Próstata/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA