Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613470

RESUMO

GATA transcription factor genes participate in plant growth, development, morphogenesis, and stress response. In this study, we carried out a comprehensive genome-wide analysis of wheat GATA transcription factor genes to reveal their molecular evolutionary characteristics and involvement in salt and drought tolerance. In total, 79 TaGATA genes containing a conserved GATA domain were identified in the wheat genome, which were classified into four subfamilies. Collinear analysis indicated that fragment duplication plays an important role in the amplification of the wheat GATA gene family. Functional disproportionation analysis between subfamilies found that both type I and type II functional divergence simultaneously occurs in wheat GATA genes, which might result in functional differentiation of the TaGATA gene family. Transcriptional expression analysis showed that TaGATA genes generally have a high expression level in leaves and in response to drought and salt stresses. Overexpression of TaGATA62 and TaGATA73 genes significantly enhanced the drought and salt tolerance of yeast and Arabidopsis. Protein-protein docking indicated that TaGATAs can enhance drought and salt tolerance by interacting between the DNA-binding motif of GATA transcription factors and photomorphogenesis-related protein TaCOP9-5A. Our results provided a base for further understanding the molecular evolution and functional characterization of the plant GATA gene family in response to abiotic stresses.


Assuntos
Resistência à Seca , Fatores de Transcrição GATA , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Triticum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Secas , Evolução Molecular , Regulação da Expressão Gênica de Plantas
2.
Int J Mol Sci ; 23(8)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35457236

RESUMO

The Multidrug and toxin efflux (MATE) gene family plays crucial roles in plant growth and development and response to adverse stresses. This work investigated the structural and evolutionary characteristics, expression profiling and potential functions involved in aluminium (Al) tolerance from a genome-wide level. In total, 211 wheat MATE genes were identified, which were classified into four subfamilies and unevenly distributed on chromosomes. Duplication analysis showed that fragments and tandem repeats played the main roles in the amplification of TaMATEs, and Type II functional disproportionation had a leading role in the differentiation of TaMATEs. TaMATEs had abundant Al resistance and environmental stress-related elements, and generally had a high expression level in roots and leaves and in response to Al stress. The 3D structure prediction by AlphaFold and molecular docking showed that six TaMATE proteins localised in the plasmalemma could combine with citrate via amino acids in the citrate exuding motif and other sites, and then transport citrate to soil to form citrate aluminium. Meanwhile, citrate aluminium formed in root cells might be transported to leaves by TaMATEs to deposit in vacuoles, thereby alleviating Al toxicity.


Assuntos
Alumínio , Triticum , Alumínio/metabolismo , Alumínio/toxicidade , Ácido Cítrico/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Simulação de Acoplamento Molecular , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Triticum/genética , Triticum/metabolismo
3.
BMC Genomics ; 21(1): 276, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245398

RESUMO

BACKGROUND: DNA binding with one finger (Dof) transcription factors play important roles in plant growth and abiotic stress responses. Although genome-wide identification and analysis of the DOF transcription factor family has been reported in other species, no relevant studies have emerged in wheat. The aim of this study was to investigate the evolutionary and functional characteristics associated with plant growth and abiotic stress responses by genome-wide analysis of the wheat Dof transcription factor gene family. RESULTS: Using the recently released wheat genome database (IWGSC RefSeq v1.0), we identified 96 wheat Dof gene family members, which were phylogenetically clustered into five distinct subfamilies. Gene duplication analysis revealed a broad and heterogeneous distribution of TaDofs on the chromosome groups 1 to 7, and obvious tandem duplication genes were present on chromosomes 2 and 3.Members of the same gene subfamily had similar exon-intron structures, while members of different subfamilies had obvious differences. Functional divergence analysis indicated that type-II functional divergence played a major role in the differentiation of the TaDof gene family. Positive selection analysis revealed that the Dof gene family experienced different degrees of positive selection pressure during the process of evolution, and five significant positive selection sites (30A, 31 T, 33A, 102G and 104S) were identified. Additionally, nine groups of coevolving amino acid sites, which may play a key role in maintaining the structural and functional stability of Dof proteins, were identified. The results from the RNA-seq data and qRT-PCR analysis revealed that TaDof genes exhibited obvious expression preference or specificity in different organs and developmental stages, as well as in diverse abiotic stress responses. Most TaDof genes were significantly upregulated by heat, PEG and heavy metal stresses. CONCLUSIONS: The genome-wide analysis and identification of wheat DOF transcription factor family and the discovery of important amino acid sites are expected to provide new insights into the structure, evolution and function of the plant Dof gene family.


Assuntos
Perfilação da Expressão Gênica/métodos , Estresse Fisiológico , Fatores de Transcrição/genética , Triticum/crescimento & desenvolvimento , Sequenciamento Completo do Genoma/métodos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Análise de Sequência de RNA , Triticum/genética
4.
BMC Genomics ; 20(1): 101, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30709338

RESUMO

BACKGROUND: Expansin loosens plant cell walls and involves in cell enlargement and various abiotic stresses. Plant expansin superfamily contains four subfamilies: α-expansin (EXPA), ß-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). In this work, we performed a comprehensive study on the molecular characterization, phylogenetic relationship and expression profiling of common wheat (Triticum aestivum) expansin gene family using the recently released wheat genome database (IWGSC RefSeq v1.1 with a coverage rate of 94%). RESULTS: Genome-wide analysis identified 241 expansin genes in the wheat genome, which were grouped into three subfamilies (EXPA, EXPB and EXLA) by phylogenetic tree. Molecular structure analysis showed that wheat expansin gene family showed high evolutionary conservation although some differences were present in different subfamilies. Some key amino acid sites that contribute to functional divergence, positive selection, and coevolution were detected. Evolutionary analysis revealed that wheat expansin gene superfamily underwent strong positive selection. The transcriptome map and qRT-PCR analysis found that wheat expansin genes had tissue/organ expression specificity and preference, and generally highly expressed in the roots. The expression levels of some expansin genes were significantly induced by NaCl and polyethylene glycol stresses, which was consistent with the differential distribution of the cis-elements in the promoter region. CONCLUSIONS: Wheat expansin gene family showed high evolutionary conservation and wide range of functional divergence. Different selection constraints may influence the evolution of the three expansin subfamilies. The different expression patterns demonstrated that expansin genes could play important roles in plant growth and abiotic stress responses. This study provides new insights into the structures, evolution and functions of wheat expansin gene family.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Proteínas de Plantas/metabolismo , Transcriptoma , Triticum/genética , Evolução Molecular , Perfilação da Expressão Gênica , Filogenia , Proteínas de Plantas/genética , Estresse Fisiológico , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
5.
BMC Plant Biol ; 18(1): 336, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30522432

RESUMO

BACKGROUND: The auxin response factor (ARF) gene family is involved in plant development and hormone regulation. Although the ARF gene family has been studied in some plant species, its structural features, molecular evolution, and expression profiling in Brachypodium distachyon L. are still not clear. RESULTS: Genome-wide analysis identified 19 ARF genes in B. distachyon. A phylogenetic tree constructed with 182 ARF genes from seven plant species revealed three different clades, and the ARF genes from within a clade exhibited structural conservation, although certain divergences occurred in different clades. The branch-site model identified some sites where positive selection may have occurred, and functional divergence analysis found more Type II divergence sites than Type I. In particular, both positive selection and functional divergence may have occurred in 241H, 243G, 244 L, 310 T, 340G and 355 T. Subcellular localization prediction and experimental verification indicated that BdARF proteins were present in the nucleus. Transcript expression analysis revealed that BdARFs were mainly expressed in the leaf and root tips, stems, and developing seeds. Some BdARF genes exhibited significantly upregulated expression under various abiotic stressors. Particularly, BdARF4 and BdARF8 were significantly upregulated in response to abiotic stress factors such as salicylic acid and heavy metals. CONCLUSION: The ARF gene family in B. distachyon was highly conserved. Several important amino acid sites were identified where positive selection and functional divergence occurred, and they may play important roles in functional differentiation. BdARF genes had clear tissue and organ expression preference and were involved in abiotic stress response, suggesting their roles in plant growth and stress resistance.


Assuntos
Brachypodium/genética , Genes de Plantas/genética , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Evolução Biológica , Brachypodium/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla , Filogenia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Transcriptoma
6.
BMC Plant Biol ; 16(1): 207, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27669820

RESUMO

BACKGROUND: Multidrug and toxic compound extrusion (MATE) transporter proteins are present in all organisms. Although the functions of some MATE gene family members have been studied in plants, few studies have investigated the gene expansion patterns, functional divergence, or the effects of positive selection. RESULTS: Forty-five MATE genes from rice and 56 from Arabidopsis were identified and grouped into four subfamilies. MATE family genes have similar exon-intron structures in rice and Arabidopsis; MATE gene structures are conserved in each subfamily but differ among subfamilies. In both species, the MATE gene family has expanded mainly through tandem and segmental duplications. A transcriptome atlas showed considerable differences in expression among the genes, in terms of transcript abundance and expression patterns under normal growth conditions, indicating wide functional divergence in this family. In both rice and Arabidopsis, the MATE genes showed consistent functional divergence trends, with highly significant Type-I divergence in each subfamily, while Type-II divergence mainly occurred in subfamily III. The Type-II coefficients between rice subfamilies I/III, II/III, and IV/III were all significantly greater than zero, while only the Type-II coefficient between Arabidopsis IV/III subfamilies was significantly greater than zero. A site-specific model analysis indicated that MATE genes have relatively conserved evolutionary trends. A branch-site model suggested that the extent of positive selection on each subfamily of rice and Arabidopsis was different: subfamily II of Arabidopsis showed higher positive selection than other subfamilies, whereas in rice, positive selection was highest in subfamily III. In addition, the analyses identified 18 rice sites and 7 Arabidopsis sites that were responsible for positive selection and for Type-I and Type-II functional divergence; there were no common sites between rice and Arabidopsis. Five coevolving amino acid sites were identified in rice and three in Arabidopsis; these sites might have important roles in maintaining local structural stability and protein functional domains. CONCLUSIONS: We demonstrate that the MATE gene family expanded through tandem and segmental duplication in both rice and Arabidopsis. Overall, the results of our analyses contribute to improved understanding of the molecular evolution and functions of the MATE gene family in plants.

7.
Development ; 139(8): 1399-404, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22399683

RESUMO

Female gamete development in Arabidopsis ovules comprises two phases. During megasporogenesis, a somatic ovule cell differentiates into a megaspore mother cell and undergoes meiosis to produce four haploid megaspores, three of which degrade. The surviving functional megaspore participates in megagametogenesis, undergoing syncytial mitosis and cellular differentiation to produce a multicellular female gametophyte containing the egg and central cell, progenitors of the embryo and endosperm of the seed. The transition between megasporogenesis and megagametogenesis is poorly characterised, partly owing to the inaccessibility of reproductive cells within the ovule. Here, laser capture microdissection was used to identify genes expressed in and/or around developing megaspores during the transition to megagametogenesis. ARGONAUTE5 (AGO5), a putative effector of small RNA (sRNA) silencing pathways, was found to be expressed around reproductive cells during megasporogenesis, and a novel semi-dominant ago5-4 insertion allele showed defects in the initiation of megagametogenesis. Expression of a viral RNAi suppressor, P1/Hc-Pro, driven by the WUSCHEL and AGO5 promoters in somatic cells flanking the megaspores resulted in a similar phenotype. This indicates that sRNA-dependent pathways acting in somatic ovule tissues promote the initiation of megagametogenesis in the functional megaspore. Notably, these pathways are independent of AGO9, which functions in somatic epidermal ovule cells to inhibit the formation of multiple megaspore-like cells. Therefore, one somatic sRNA pathway involving AGO9 restricts reproductive development to the functional megaspore and a second pathway, inhibited by ago5-4 and P1/Hc-Pro, promotes megagametogenesis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Mitose , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/genética , Alelos , Animais , Proteínas Argonautas/genética , Endosperma/metabolismo , Feminino , Flores , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Interferência de RNA , Sementes/metabolismo
8.
BMC Evol Biol ; 14: 124, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24913827

RESUMO

BACKGROUND: The caleosin genes encode proteins with a single conserved EF hand calcium-binding domain and comprise small gene families found in a wide range of plant species. These proteins may be involved in many cellular and biological processes coupled closely to the synthesis, degradation, or stability of oil bodies. Although previous studies of this protein family have been reported for Arabidopsis and other species, understanding of the evolution of the caleosin gene family in plants remains inadequate. RESULTS: In this study, comparative genomic analysis was performed to investigate the phylogenetic relationships, evolutionary history, functional divergence, positive selection, and coevolution of caleosins. First, 84 caleosin genes were identified from five main lineages that included 15 species. Phylogenetic analysis placed these caleosins into five distinct subfamilies (sub I-V), including two subfamilies that have not been previously identified. Among these subfamilies, sub II coincided with the distinct P-caleosin isoform recently identified in the pollen oil bodies of lily; caleosin genes from the same lineage tended to be clustered together in the phylogenetic tree. A special motif was determined to be related with the classification of caleosins, which may have resulted from a deletion in sub I and sub III occurring after the evolutionary divergence of monocot and dicot species. Additionally, several segmentally and tandem-duplicated gene pairs were identified from seven species, and further analysis revealed that caleosins of different species did not share a common expansion model. The ages of each pair of duplications were calculated, and most were consistent with the time of genome-wide duplication events in each species. Functional divergence analysis showed that changes in functional constraints have occurred between subfamilies I/IV, II/IV, and II/V, and some critical amino acid sites were identified during the functional divergence. Additional analyses revealed that caleosins were under positive selection during evolution, and seven candidate amino acid sites (70R, 74G, 88 L, 89G, 100 K, 106A, 107S) for positive selection were identified. Interestingly, the critical amino acid residues of functional divergence and positive selection were mainly located in C-terminal domain. Finally, three groups of coevolved amino acid sites were identified. Among these coevolved sites, seven from group 2 were located in the Ca2+-binding region of crucial importance. CONCLUSION: In this study, the evolutionary and expansion patterns of the caleosin gene family were predicted, and a series of amino acid sites relevant to their functional divergence, adaptive evolution, and coevolution were identified. These findings provide data to facilitate further functional analysis of caleosin gene families in the plant lineage.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Evolução Molecular , Proteínas de Plantas/genética , Plantas/genética , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Proteínas de Ligação ao Cálcio/química , Genes Duplicados , Filogenia , Células Vegetais/química , Proteínas de Plantas/química , Alinhamento de Sequência
9.
BMC Plant Biol ; 14: 373, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25524588

RESUMO

BACKGROUND: GRAS proteins belong to a plant transcription factor family that is involved with multifarious roles in plants. Although previous studies of this protein family have been reported for Arabidopsis, rice, Chinese cabbage and other species, investigation of expansion patterns and evolutionary rate on the basis of comparative genomics in different species remains inadequate. RESULTS: A total of 289 GRAS genes were identified in Arabidopsis, B. distachyon, rice, soybean, S. moellendorffii, and P. patens and were grouped into seven subfamilies, supported by the similarity of their exon-intron patterns and structural motifs. All of tandem duplicated genes were found in group II except one cluster of rice, indicating that tandem duplication greatly promoted the expansion of group II. Furthermore, segment duplications were mainly found in the soybean genome, whereas no single expansion pattern dominated in other plant species indicating that GRAS genes from these five species might be subject to a more complex evolutionary mechanism. Interestingly, branch-site model analyses of positive selection showed that a number of sites were positively selected under foreground branches I and V. These results strongly indicated that these groups were experiencing higher positive selection pressure. Meanwhile, the site-specific model revealed that the GRAS genes were under strong positive selection in P. patens. DIVERGE v2.0 was used to detect critical amino acid sites, and the results showed that the shifted evolutionary rate was mainly attributed to the functional divergence between the GRAS genes in the two groups. In addition, the results also demonstrated the expression divergence of the GRAS duplicated genes in the evolution. In short, the results above provide a solid foundation for further functional dissection of the GRAS gene superfamily. CONCLUSIONS: In this work, differential expression, evolutionary rate, and expansion patterns of the GRAS gene family in the six species were predicted. Especially, tandem duplication events played an important role in expansion of group II. Together, these results contribute to further functional analysis and the molecular evolution of the GRAS gene superfamily.


Assuntos
Embriófitas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Substituição de Aminoácidos , Embriófitas/metabolismo , Duplicação Gênica , Especificidade de Órgãos , Filogenia , Proteínas de Plantas/metabolismo , Seleção Genética , Sequências de Repetição em Tandem , Fatores de Transcrição/metabolismo
10.
BMC Plant Biol ; 14: 20, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24410729

RESUMO

BACKGROUND: Wheat seed germination directly affects wheat yield and quality. Although transcriptome and proteome analyses during seed germination have been reported in some crop plant species, dynamic transcriptome characterization during wheat seed germination has not been conducted. We performed the first comprehensive dynamic transcriptome analysis during different seed germination stages of elite Chinese bread wheat cultivar Jimai 20 using the Affymetrix Wheat Genome Array. RESULTS: A total of 61,703 probe sets representing 51,411 transcripts were identified during the five seed germination stages of Jimai 20, of which 2,825 differential expression probe sets corresponding to 2,646 transcripts with different functions were declared by ANOVA and a randomized variance model. The seed germination process included a rapid initial uptake phase (0-12 hours after imbibition [HAI]), a plateau phase (12-24 HAI), and a further water uptake phase (24-48 HAI), corresponding to switches from the degradation of small-molecule sucrose to the metabolism of three major nutrients and to photosynthesis. Hierarchical cluster and MapMan analyses revealed changes in several significant metabolism pathways during seed germination as well as related functional groups. The signal pathway networks constructed with KEGG showed three important genes encoding the phosphofructokinase family protein, with fructose-1, 6-bisphosphatase, and UTP-glucose-1-phosphate uridylyltransferase located at the center, indicating their pivotal roles in the glycolytic pathway, gluconeogenesis, and glycogenesis, respectively. Several significant pathways were selected to establish a metabolic pathway network according to their degree value, which allowed us to find the pathways vital to seed germination. Furthermore, 51 genes involved in transport, signaling pathway, development, lipid metabolism, defense response, nitrogen metabolism, and transcription regulation were analyzed by gene co-expression network with a k-core algorithm to determine which play pivotal roles in germination. Twenty-three meaningful genes were found, and quantitative RT-PCR analysis validated the expression patterns of 12 significant genes. CONCLUSIONS: Wheat seed germination comprises three distinct phases and includes complicated regulation networks involving a large number of genes. These genes belong to many functional groups, and their co-regulations guarantee regular germination. Our results provide new insight into metabolic changes during seed germination and interactions between some significant genes.


Assuntos
Sementes/genética , Triticum/genética , Perfilação da Expressão Gênica , Germinação/genética , Germinação/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
BMC Plant Biol ; 14: 93, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24720629

RESUMO

BACKGROUND: Expansins are plant cell wall loosening proteins that are involved in cell enlargement and a variety of other developmental processes. The expansin superfamily contains four subfamilies; namely, α-expansin (EXPA), ß-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). Although the genome sequencing of soybeans is complete, our knowledge about the pattern of expansion and evolutionary history of soybean expansin genes remains limited. RESULTS: A total of 75 expansin genes were identified in the soybean genome, and grouped into four subfamilies based on their phylogenetic relationships. Structural analysis revealed that the expansin genes are conserved in each subfamily, but are divergent among subfamilies. Furthermore, in soybean and Arabidopsis, the expansin gene family has been mainly expanded through tandem and segmental duplications; however, in rice, segmental duplication appears to be the dominant process that generates this superfamily. The transcriptome atlas revealed notable differential expression in either transcript abundance or expression patterns under normal growth conditions. This finding was consistent with the differential distribution of the cis-elements in the promoter region, and indicated wide functional divergence in this superfamily. Moreover, some critical amino acids that contribute to functional divergence and positive selection were detected. Finally, site model and branch-site model analysis of positive selection indicated that the soybean expansin gene superfamily is under strong positive selection, and that divergent selection constraints might have influenced the evolution of the four subfamilies. CONCLUSION: This study demonstrated that the soybean expansin gene superfamily has expanded through tandem and segmental duplication. Differential expression indicated wide functional divergence in this superfamily. Furthermore, positive selection analysis revealed that divergent selection constraints might have influenced the evolution of the four subfamilies. In conclusion, the results of this study contribute novel detailed information about the molecular evolution of the expansin gene superfamily in soybean.


Assuntos
Genes de Plantas , Variação Genética , Glycine max/genética , Família Multigênica , Proteínas de Plantas/genética , Duplicações Segmentares Genômicas , Seleção Genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/genética , Cromossomos de Plantas/genética , Códon/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Funções Verossimilhança , Modelos Genéticos , Oryza/genética , Filogenia , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência
12.
BMC Plant Biol ; 14: 260, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25273817

RESUMO

BACKGROUND: The endoplasmic reticulum chaperone binding protein (BiP) is an important functional protein, which is involved in protein synthesis, folding assembly, and secretion. In order to study the role of BiP in the process of wheat seed development, we cloned three BiP homologous cDNA sequences in bread wheat (Triticum aestivum), completed by rapid amplification of cDNA ends (RACE), and examined the expression of wheat BiP in wheat tissues, particularly the relationship between BiP expression and the subunit types of HMW-GS using near-isogenic lines (NILs) of HMW-GS silencing, and under abiotic stress. RESULTS: Sequence analysis demonstrated that all BiPs contained three highly conserved domains present in plants, animals, and microorganisms, indicating their evolutionary conservation among different biological species. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed that TaBiP (Triticum aestivum BiP) expression was not organ-specific, but was predominantly localized to seed endosperm. Furthermore, immunolocalization confirmed that TaBiP was primarily located within the protein bodies (PBs) in wheat endosperm. Three TaBiP genes exhibited significantly down-regulated expression following high molecular weight-glutenin subunit (HMW-GS) silencing. Drought stress induced significantly up-regulated expression of TaBiPs in wheat roots, leaves, and developing grains. CONCLUSIONS: The high conservation of BiP sequences suggests that BiP plays the same role, or has common mechanisms, in the folding and assembly of nascent polypeptides and protein synthesis across species. The expression of TaBiPs in different wheat tissue and under abiotic stress indicated that TaBiP is most abundant in tissues with high secretory activity and with high proportions of cells undergoing division, and that the expression level of BiP is associated with the subunit types of HMW-GS and synthesis. The expression of TaBiPs is developmentally regulated during seed development and early seedling growth, and under various abiotic stresses.


Assuntos
Proteínas de Choque Térmico/genética , Estresse Fisiológico , Triticum/genética , Sequência de Aminoácidos , Clonagem Molecular , Secas , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Perfilação da Expressão Gênica , Glutens/análise , Glutens/isolamento & purificação , Proteínas de Choque Térmico/metabolismo , Dados de Sequência Molecular , Mutação , Especificidade de Órgãos , Filogenia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Estrutura Terciária de Proteína , Plântula/genética , Plântula/fisiologia , Sementes/genética , Sementes/fisiologia , Alinhamento de Sequência , Triticum/fisiologia
13.
Plant Physiol ; 163(1): 216-31, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23864557

RESUMO

Hieracium praealtum forms seeds asexually by apomixis. During ovule development, sexual reproduction initiates with megaspore mother cell entry into meiosis and formation of a tetrad of haploid megaspores. The sexual pathway ceases when a diploid aposporous initial (AI) cell differentiates, enlarges, and undergoes mitosis, forming an aposporous embryo sac that displaces sexual structures. Embryo and endosperm development in aposporous embryo sacs is fertilization independent. Transcriptional data relating to apomixis initiation in Hieracium spp. ovules is scarce and the functional identity of the AI cell relative to other ovule cell types is unclear. Enlarging AI cells with undivided nuclei, early aposporous embryo sacs containing two to four nuclei, and random groups of sporophytic ovule cells not undergoing these events were collected by laser capture microdissection. Isolated amplified messenger RNA samples were sequenced using the 454 pyrosequencing platform and comparatively analyzed to establish indicative roles of the captured cell types. Transcriptome and protein motif analyses showed that approximately one-half of the assembled contigs identified homologous sequences in Arabidopsis (Arabidopsis thaliana), of which the vast majority were expressed during early Arabidopsis ovule development. The sporophytic ovule cells were enriched in signaling functions. Gene expression indicative of meiosis was notably absent in enlarging AI cells, consistent with subsequent aposporous embryo sac formation without meiosis. The AI cell transcriptome was most similar to the early aposporous embryo sac transcriptome when comparing known functional annotations and both shared expressed genes involved in gametophyte development, suggesting that the enlarging AI cell is already transitioning to an embryo sac program prior to mitotic division.


Assuntos
Apomixia/fisiologia , Asteraceae/citologia , Mitose , Asteraceae/crescimento & desenvolvimento , Asteraceae/fisiologia , Modelos Biológicos , RNA de Plantas/metabolismo , Sementes/citologia , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Transdução de Sinais
14.
BMC Plant Biol ; 13: 148, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24088323

RESUMO

BACKGROUND: WRKY genes encode one of the most abundant groups of transcription factors in higher plants, and its members regulate important biological process such as growth, development, and responses to biotic and abiotic stresses. Although the soybean genome sequence has been published, functional studies on soybean genes still lag behind those of other species. RESULTS: We identified a total of 133 WRKY members in the soybean genome. According to structural features of their encoded proteins and to the phylogenetic tree, the soybean WRKY family could be classified into three groups (groups I, II, and III). A majority of WRKY genes (76.7%; 102 of 133) were segmentally duplicated and 13.5% (18 of 133) of the genes were tandemly duplicated. This pattern was not apparent in Arabidopsis or rice. The transcriptome atlas revealed notable differential expression in either transcript abundance or in expression patterns under normal growth conditions, which indicated wide functional divergence in this family. Furthermore, some critical amino acids were detected using DIVERGE v2.0 in specific comparisons, suggesting that these sites have contributed to functional divergence among groups or subgroups. In addition, site model and branch-site model analyses of positive Darwinian selection (PDS) showed that different selection regimes could have affected the evolution of these groups. Sites with high probabilities of having been under PDS were found in groups I, II c, II e, and III. Together, these results contribute to a detailed understanding of the molecular evolution of the WRKY gene family in soybean. CONCLUSIONS: In this work, all the WRKY genes, which were generated mainly through segmental duplication, were identified in the soybean genome. Moreover, differential expression and functional divergence of the duplicated WRKY genes were two major features of this family throughout their evolutionary history. Positive selection analysis revealed that the different groups have different evolutionary rates. Together, these results contribute to a detailed understanding of the molecular evolution of the WRKY gene family in soybean.


Assuntos
Evolução Molecular , Glycine max/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas/genética , Dados de Sequência Molecular , Duplicações Segmentares Genômicas/genética , Homologia de Sequência de Aminoácidos
15.
Plant J ; 66(5): 890-902, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21418351

RESUMO

Asexual seed formation, or apomixis, in the Hieracium subgenus Pilosella is controlled by two dominant independent genetic loci, LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP). We examined apomixis mutants that had lost function in one or both loci to establish their developmental roles during seed formation. In apomicts, sexual reproduction is initiated first. Somatic aposporous initial (AI) cells differentiate near meiotic cells, and the sexual pathway is terminated as AI cells undergo mitotic embryo sac formation. Seed initiation is fertilization-independent. Using a partially penetrant cytotoxic reporter to inhibit meioisis, we showed that developmental events leading to the completion of meiotic tetrad formation are required for AI cell formation. Sexual initiation may therefore stimulate activity of the LOA locus, which was found to be required for AI cell formation and subsequent suppression of the sexual pathway. AI cells undergo nuclear division to form embryo sacs, in which LOP functions gametophytically to stimulate fertilization-independent embryo and endosperm formation. Loss of function in either locus results in partial reversion to sexual reproduction, and loss of function in both loci results in total reversion to sexual reproduction. Therefore, in these apomicts, sexual reproduction is the default reproductive mode upon which apomixis is superimposed. These loci are unlikely to encode genes essential for sexual reproduction, but may function to recruit the sexual machinery at specific time points to enable apomixis.


Assuntos
Asteraceae/genética , Genes de Plantas , Loci Gênicos , Óvulo Vegetal/citologia , Reprodução Assexuada , Sementes/citologia , Asteraceae/citologia , Asteraceae/crescimento & desenvolvimento , Asteraceae/efeitos da radiação , Segregação de Cromossomos , Cruzamentos Genéticos , Gametogênese Vegetal , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação , Meiose , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/efeitos da radiação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento , Polinização , Sementes/crescimento & desenvolvimento , Sementes/efeitos da radiação , Tetraploidia
16.
BMC Plant Biol ; 12: 147, 2012 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-22900893

RESUMO

BACKGROUND: The analyses of protein synthesis, accumulation and regulation during grain development in wheat are more complex because of its larger genome size compared to model plants such as Arabidopsis and rice. In this study, grains from two wheat cultivars Jimai 20 and Zhoumai 16 with different gluten quality properties were harvested at five development stages, and were used to displayed variable expression patterns of grain proteins. RESULTS: Proteome characterization during grain development in Chinese bread wheat cultivars Jimai 20 and Zhoumai 16 with different quality properties was investigated by 2-DE and tandem MALDI-TOF/TOF-MS. Identification of 117 differentially accumulated protein spots representing 82 unique proteins and five main expression patterns enabled a chronological description of wheat grain formation. Significant proteome expression differences between the two cultivars were found; these included 14 protein spots that accumulated in both cultivars but with different patterns and 27 cultivar-different spots. Among the cultivar-different protein spots, 14 accumulated in higher abundance in Jimai 20 than in Zhoumai 16, and included NAD-dependent isocitrate dehydrogenase, triticin precursor, LMW-s glutenin subunit and replication factor C-like protein. These proteins are likely to be associated with superior gluten quality. In addition, some proteins such as class II chitinase and peroxidase 1 with isoforms in developing grains were shown to be phosphorylated by Pro-Q Diamond staining and phosphorprotein site prediction. Phosphorylation could have important roles in wheat grain development. qRT-PCR analysis demonstrated that transcriptional and translational expression patterns of many genes were significantly different. CONCLUSIONS: Wheat grain proteins displayed variable expression patterns at different developmental stages and a considerable number of protein spots showed differential accumulation between two cultivars. Differences in seed storage proteins were considered to be related to different quality performance of the flour from these wheat cultivars. Some proteins with isoforms were phosphorylated, and this may reflect their importance in grain development. Our results provide new insights into proteome characterization during grain development in different wheat genotypes.


Assuntos
Regulação da Expressão Gênica de Plantas , Glutens/metabolismo , Proteoma/análise , Sementes/crescimento & desenvolvimento , Triticum/metabolismo , Sequência de Aminoácidos , Eletroforese em Gel Bidimensional , Glutens/genética , Dados de Sequência Molecular , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteômica , Sementes/genética , Sementes/metabolismo , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transcrição Gênica , Triticum/genética , Triticum/crescimento & desenvolvimento , Leguminas
17.
Yi Chuan ; 34(5): 647-50, 2012 May.
Artigo em Zh | MEDLINE | ID: mdl-22659437

RESUMO

Genetics and Eugenics is a cross-discipline between genetics and eugenics. It is a common curriculum in many Chinese universities. In order to increase the learning interest, we introduced case teaching method and got a better teaching effect. Based on our teaching practices, we summarized some experiences about this subject. In this article, the main problem of case-based method applied in Genetics and Eugenics teaching was discussed.


Assuntos
Eugenia (Ciência) , Genética/educação , Ensino/métodos
18.
Open Life Sci ; 17(1): 155-171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350448

RESUMO

Unique to plants, growth regulatory factors (GRFs) play important roles in plant growth and reproduction. This study investigated the evolutionary and functional characteristics associated with plant growth. Using genome-wide analysis of 15 plant species, 173 members of the GRF family were identified and phylogenetically categorized into six groups. All members contained WRC and QLQ conserved domains, and the family's expansion largely depended on segmental duplication. The promoter region of the GRF gene family mainly contained four types of cis-acting elements (light-responsive elements, development-related elements, hormone-responsive elements, and environmental stress-related elements) that are mainly related to gene expression levels. Functional divergence analysis revealed that changes in amino acid site evolution rate played a major role in the differentiation of the GRF gene family, with ten significant sites identified. Six significant sites were identified for positive selection. Moreover, the four groups of coevolutionary sites identified may play a key role in regulating the transcriptional activation of the GRF protein. Expression profiles revealed that GRF genes were generally highly expressed in young plant tissues and had tissue or organ expression specificity, demonstrating their functional conservation with distinct divergence. The results of these sequence and expression analyses are expected to provide molecular evolutionary and functional references for the plant GRF gene family.

19.
Front Plant Sci ; 13: 991171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105699

RESUMO

Activity of BC1 complex kinase (ABC1K) serves as an atypical kinase family involved in plant stress resistance. This study identified 44 ABC1K genes in the wheat genome, which contained three clades (I-III). TaABC1K genes generally had similar structural features, but differences were present in motif and exon compositions from different clade members. More type II functional divergence sites were detected between clade I and clade III and no positive selection site were found in TaABC1K family. The three-dimensional structure prediction by Alphafold2 showed that TaABC1K proteins had more α-helixes with a relatively even distribution, and different clade members had differences in the content of secondary structures. The cis-acting element analysis showed that TaABC1K genes contained abundant cis-acting elements related to plant hormones and environmental stress response in the promoter region, and generally displayed a significantly upregulated expression under drought stress. In particular, both TaABC1K3 and TaABC1K6 genes from clade I was highly induced by drought stress, and their overexpression in yeast and Arabidopsis enhanced drought tolerance by suppressing active oxygen burst and reducing photosynthesis impairment. Meanwhile, TaABC1K3 and TaABC1K6 could, respectively, complement the function of Arabidopsis abc1k3 and abc1k6 mutants and reduce photosynthesis damage caused by drought stress.

20.
BMC Genomics ; 12: 513, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-22003838

RESUMO

BACKGROUND: Wheat is one of the most important cereal crops for human beings, with seeds being the tissue of highly economic value. Various morphogenetic and metabolic processes are exclusively associated with seed maturation. The goal of this study was to screen and identify genes specifically expressed in the developing seed of wheat with an integrative utilization of digital differential display (DDD) and available online microarray databases. RESULTS: A total of 201 unigenes were identified as the results of DDD screening and microarray database searching. The expressions of 6 of these were shown to be seed-specific by qRT-PCR analysis. Further GO enrichment analysis indicated that seed-specific genes were mainly associated with defense response, response to stress, multi-organism process, pathogenesis, extracellular region, nutrient reservoir activity, enzyme inhibitor activity, antioxidant activity and oxidoreductase activity. A comparison of this set of genes with the rice (Oryza sativa) genome was also performed and approximately three-fifths of them have rice counterparts. Between the counterparts, around 63% showed similar expression patterns according to the microarray data. CONCLUSIONS: In conclusion, the DDD screening combined with microarray data analysis is an effective strategy for the identification of seed-specific expressed genes in wheat. These seed-specific genes screened during this study will provide valuable information for further studies about the functions of these genes in wheat.


Assuntos
Perfilação da Expressão Gênica , Genes de Plantas/genética , Sementes/genética , Software , Triticum/genética , Análise por Conglomerados , Bases de Dados Genéticas , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA