Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cell Biochem ; 120(6): 9964-9978, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30582202

RESUMO

Cholangiocarcinoma (CCA) is a severe malignancy usually producing a poor prognosis and high mortality rate. MicroRNAs (miRNAs) have been reported in association with CCA; however, the role miR-329 plays in the CCA condition still remains unclear. Therefore, this study was conducted to explore the underlying mechanism of which miR-329 is influencing the progression of CCA. This work studied the differential analysis of the expression chips of CCA obtained from the Gene Expression Omnibus database. Next, to determine both the expression and role of pituitary tumor transforming gene-1 (PTTG1) in CCA, the miRNAs regulating PTTG1 were predicted. In the CCA cells that had been intervened with miR-329 upregulation or inhibition, along with PTTG1 silencing, expression of miR-329, PTTG1, p-p38/p38, p-ERK5/ERK5, proliferating cell nuclear antigen (PCNA), Cyclin D1, Bcl-2-associated X protein (Bax), B-cell CLL/lymphoma 2 (Bcl-2), and caspase-3 were determined. The effects of both miR-329 and PTTG1 on cell proliferation, cell-cycle distribution, and apoptosis were also assayed. The miR-329 was likely to affect the CCA development through regulation of the PTTG1-mediated mitogen-activated protein kinase (MAPK) signaling pathway. The miR-329 targeted PTTG1, leading to inactivation of the MAPK signaling pathway. Upregulation of miR-329 and silencing of PTTG1 inhibited the CCA cell proliferation, induced cell-cycle arrest, and subsequently promoted apoptosis with elevations in Bax, cleaved caspase-3, and total caspase-3, but showed declines in PCNA, Cyclin D1, and Bcl-2. Moreover, miR-329 was also found to suppress the tumor growth by downregulation of PTTG1. To summarize, miR-329 inhibited the expression of PTTG1 to inactivate the MAPK signaling pathway, thus suppressing the CCA progression, thereby providing a therapeutic basis for the CCA treatment.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Proliferação de Células , Colangiocarcinoma/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , MicroRNAs/metabolismo , Proteínas de Neoplasias/biossíntese , RNA Neoplásico/metabolismo , Securina/biossíntese , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Humanos , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Neoplásico/genética , Securina/genética
2.
Exp Ther Med ; 21(3): 223, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33603832

RESUMO

Hepatic ischemia/reperfusion injury (IRI) is a result of the ischemic cascade and may occur in the settings of liver trauma, resection and transplantation. Components of the complement system have been indicated to be mediators of hepatic IRI and regulators of liver regeneration. As such, their potential to mediate both beneficial and harmful effects render them key targets for therapy. In the present study, the mechanisms of complement mediating hepatic IRI were discussed with a focus on the different functions of complement in hepatic injury and liver recovery, and an explanation for this apparent paradox is provided, i.e. that the complement products C3a and C5a have an important role in liver damage; however, C3a and C5a are also necessary for liver regeneration. Furthermore, situated at the end of the complement activation cascade, the membrane attack complex is crucial in hepatic IRI and inhibiting the complex with a site-targeted murine complement inhibitor, complement receptor 2-CD59, may improve liver regeneration after partial hepatectomy, even when hepatectomy is combined with ischemia and reperfusion.

3.
Am J Transl Res ; 13(2): 515-531, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33594307

RESUMO

PURPOSE: Hepatitis B virus (HBV) infection is one main cause of hepatocellular carcinoma (HCC), but the mechanisms of pathogenesis still remain unclear. METHODS: We screened the 1351 differentially expressed genes related to HBV-induced HCC by bioinformatics analysis from databases and found that Plasminogen (PLG) may be a key gene in HBV-induced HCC progression. Then, we used a series of experiments in vivo and in vitro to explore the roles of PLG in HBV-HCC progression, such as qRT-PCR, western blot, ELISA, flow cytometry and TUNEL assay, subcutaneous xenografts and histopathological analysis to reveal the underlying mechanisms. RESULTS: PLG was over-expressed in HBV positive hepatocellular carcinoma tissues and cells. PLG silencing promoted HBV-HCC cell apoptosis in vitro and suppressed the growth of HBV-induced HCC xenografts in vivo both through inhibiting HBV replication. Then, GO and KEGG analysis of these differentially expressed genes revealed that the Hippo pathway was the key pathway involved in HBV-induced HCC, and SRC, a downstream target gene of PLG, was highly expressed in HBV-induced HCC and related to the Hippo pathway. Thus, we speculated that PLG promoted HBV-induced HCC progression through up-regulating and activating the expression of SRC and promoting Hippo signaling pathway function on HBV-HCC cell survival. CONCLUSION: Our study suggests PLG may be an activator of HBV-infected hepatocellular carcinoma development, as a novel prognostic biomarker and therapeutic target for HBV-HCC.

4.
Life Sci ; 258: 118029, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32619495

RESUMO

OBJECTIVE: Hepatitis B virus (HBV) infection causes liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC) development, but the underlying mechanism remains poorly understood. This study aimed to investigate the roles and molecular mechanisms of Dystrobrevin-α (DTNA) in HBV-induced liver cirrhosis and HCC pathogenesis. METHODS: DTNA expression was bioinformatically analyzed using the GEO database. DTNA expression was silenced by transfection with shRNAs. Cell proliferation and apoptosis were evaluated by MTT and flow cytometry respectively. The expression of genes in mRNA or protein levels was assessed by quantitative RT-PCR and western blotting. The interaction between proteins was predicted with the String and GCBI online softwares, and then confirmed by co-immunoprecipitation. Animal models were established by injecting nude mice with AVV8-HBV1.3 vector. RESULTS: Bioinformatics analysis showed a significantly increase in DTNA expression in HBV-positive liver cirrhosis and HCC patients. HBV infection caused a significantly increase in DTNA expression in HCC cell lines HepAD38 and HepG2.2.15. DTNA knockdown suppressed proliferation and promoted apoptosis of HBV-infected HepAD38 and HepG2.2.15 cells. HBV induced elevated expression of fibrosis-related genes Collagen II and TGFß1 in LO-2 cells, which were suppressed by DTNA knockdown. DTNA directly binded with STAT3 protein to promote STAT3 phosphorylation and TGFß1 expression and repress P53 expression in HBV-infected HepAD38 and LO-2 cells. The DTNA/STAT3 axis was activated during HBV-induced fibrosis, cirrhosis and HCC development in mouse model. CONCLUSION: DTNA binds with and further activates STAT3 to induce TGFß1 expression and repress P53 expression, thus promoting HBV-induced liver fibrosis, cirrhosis and hepatocellular carcinoma progression.


Assuntos
Carcinoma Hepatocelular/virologia , Progressão da Doença , Proteínas Associadas à Distrofina/metabolismo , Vírus da Hepatite B/fisiologia , Neoplasias Hepáticas/virologia , Neuropeptídeos/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Carcinoma Hepatocelular/patologia , Proliferação de Células , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Células Hep G2 , Hepatite B , Humanos , Cirrose Hepática/complicações , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Ligação Proteica , Transdução de Sinais
5.
World J Hepatol ; 10(10): 662-669, 2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-30386459

RESUMO

The complement system is a key component of the body's immune system. When abnormally activated, this system can induce inflammation and damage to normal tissues and participate in the development and progression of a variety of diseases. In the past, many scholars believed that alcoholic liver disease (ALD) is induced by the stress of ethanol on liver cells, including oxidative stress and dysfunction of mitochondria and protease bodies, causing hepatocyte injury and apoptosis. Recent studies have shown that complement activation is also involved in the genesis and development of ALD. This review focuses on the roles of complement activation in ALD and of therapeutic intervention in complement-activation pathways. We intend to provide new ideas on the diagnosis and treatment of ALD.

6.
Nanoscale Res Lett ; 13(1): 149, 2018 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-29752609

RESUMO

The optical properties of aluminum-doped zinc oxide (AZO) thin films were calculated rapidly and accurately by point-by-point analysis from spectroscopic ellipsometry (SE) data. It was demonstrated that there were two different physical mechanisms, i.e., the interfacial effect and crystallinity, for the thickness-dependent permittivity in the visible and infrared regions. In addition, there was a blue shift for the effective plasma frequency of AZO when the thickness increased, and the effective plasma frequency did not exist for AZO ultrathin films (< 25 nm) in the infrared region, which demonstrated that AZO ultrathin films could not be used as a negative index metamaterial. Based on detailed permittivity research, we designed a near-perfect absorber at 2-5 µm by etching AZO-ZnO alternative layers. The alternative layers matched the phase of reflected light, and the void cylinder arrays extended the high absorption range. Moreover, the AZO absorber demonstrated feasibility and applicability on different substrates.

7.
World J Gastroenterol ; 21(9): 2807-15, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25759553

RESUMO

AIM: To conduct a meta-analysis evaluating the association between the peripheral blood neutrophil to lymphocyte ratio (NLR) and the outcome of patients with pancreatic cancer. METHODS: Studies evaluating the relationship between the peripheral blood NLR and outcome of patients with pancreatic cancer published up to May 2014 were searched using electronic databases, including PubMed, Web of Science, Embase and Ovid. A meta-analysis was performed to pool the hazard ratios (HRs) or odds ratios (ORs) and their 95% confidence intervals (CIs) using either a fixed-effects model or a random-effects model to quantitatively assess the prognostic value of NLR and its association with clinicopathological parameters. RESULTS: Eleven studies containing a total of 1804 patients were eligible according to our selection criteria, and combined hazard ratios indicated that high NLR was a poor prognostic marker for pancreatic cancer patients because it had an unfavorable impact on the overall survival (OS) (HR = 2.61, 95%CI: 1.68-4.06, P = 0.000) and cancer specific survival (HR = 1.66, 95%CI: 1.08-2.57, P = 0.021). Subgroup analysis revealed that high NLR was associated with poor OS in patients with mixed treatment (HR = 4.36, 95%CI: 2.50-7.61, P = 0.000), chemotherapy (HR = 2.08, 95%CI: 1.49-2.9, P = 0.000), or surgical resection (HR = 1.2, 95%CI: 1.00-1.44, P = 0.048). Additionally, high NLR was significantly correlated with tumor metastasis (OR = 1.69, 95%CI: 1.10-2.59, P = 0.016), poor tumor differentiation (OR = 2.75, 95%CI: 1.19-6.36, P = 0.016), poor performance status (OR = 2.56, 95%CI: 1.63-4.03, P = 0.000), high cancer antigen 199 (OR = 2.62, 95%CI: 1.49-4.60, P = 0.000), high C-reactive protein (OR = 4.32, 95%CI: 2.71-6.87, P = 0.000), and low albumin (OR = 3.56, 95%CI: 1.37-9.27, P = 0.009). CONCLUSION: High peripheral blood NLR suggested a poor prognosis for patients with pancreatic cancer, and it could be a novel marker of survival evaluation and could help clinicians develop therapeutic strategies for pancreatic cancer patients.


Assuntos
Contagem de Linfócitos , Linfócitos/imunologia , Neutrófilos/imunologia , Neoplasias Pancreáticas/imunologia , Humanos , Razão de Chances , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Valor Preditivo dos Testes , Fatores de Risco , Análise de Sobrevida , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA