Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Pharmacol Res ; 190: 106740, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36958408

RESUMO

Cancer stem cells (CSCs) have been blamed as the main culprit of tumor initiation, progression, metastasis, chemoresistance, and recurrence. However, few anti-CSCs agents have achieved clinical success so far. Here we report a novel derivative of lonidamine (LND), namely HYL001, which selectively and potently inhibits CSCs by targeting mitochondria, with 380-fold and 340-fold lower IC50 values against breast cancer stem cells (BCSCs) and hepatocellular carcinoma stem cells (HCSCs), respectively, compared to LND. Mechanistically, we reveal that HYL001 downregulates glutaminase (GLS) expression to block glutamine metabolism, blunt tricarboxylic acid cycle, and amplify mitochondrial oxidative stress, leading to apoptotic cell death. Therefore, HYL001 displays significant antitumor activity in vivo, both as a single agent and combined with paclitaxel. Furthermore, HYL001 represses CSCs of fresh tumor tissues derived from liver cancer patients. This study provides critical implications for CSCs biology and development of potent anti-CSCs drugs.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Glutamina/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas , Linhagem Celular Tumoral
2.
Biomaterials ; 311: 122673, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897030

RESUMO

The adaptive antioxidant systems of tumor cells, predominantly glutathione (GSH) and thioredoxin (TRX) networks, severely impair photodynamic therapy (PDT) potency and anti-tumor immune responses. Here, a multistage redox homeostasis nanodisruptor (Phy@HES-IR), integrated by hydroxyethyl starch (HES)-new indocyanine green (IR820) conjugates with physcion (Phy), an inhibitor of the pentose phosphate pathway (PPP), is rationally designed to achieve PDT primed cancer immunotherapy. In this nanodisruptor, Phy effectively depletes intracellular GSH of tumor cells by inhibiting 6-phosphogluconate dehydrogenase (6PGD) activity. Concurrently, it is observed for the first time that the modified IR820-NH2 molecule not only exerts PDT action but also interferes with TRX antioxidant pathway by inhibiting thioredoxin oxidase (TRXR) activity. The simultaneous weakening of two major antioxidant pathways of tumor cells is favorable to maximize the PDT efficacy induced by HES-IR conjugates. By virtue of the excellent protecting ability of the plasma expander HES, Phy@HES-IR can remain stable in the blood circulation and efficiently enrich in the tumor region. Consequently, PDT and metabolic modulation synergistically induced immunogenic cell death, which not only suppressed primary tumors but also stimulated potent anti-tumor immunity to inhibit the growth of distant tumors in 4T1 tumor-bearing mice.

3.
Research (Wash D C) ; 7: 0335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766644

RESUMO

Cuproptosis-based cancer nanomedicine has received widespread attention recently. However, cuproptosis nanomedicine against pancreatic ductal adenocarcinoma (PDAC) is severely limited by cancer stem cells (CSCs), which reside in the hypoxic stroma and adopt glycolysis metabolism accordingly to resist cuproptosis-induced mitochondria damage. Here, we leverage hyperbaric oxygen (HBO) to regulate CSC metabolism by overcoming tumor hypoxia and to augment CSC elimination efficacy of polydopamine and hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanoparticles (CuET@PH NPs). Mechanistically, while HBO and CuET@PH NPs inhibit glycolysis and oxidative phosphorylation, respectively, the combination of HBO and CuET@PH NPs potently suppresses energy metabolism of CSCs, thereby achieving robust tumor inhibition of PDAC and elongating mice survival importantly. This study reveals novel insights into the effects of cuproptosis nanomedicine on PDAC CSC metabolism and suggests that the combination of HBO with cuproptosis nanomedicine holds significant clinical translation potential for PDAC patients.

4.
J Control Release ; 356: 288-305, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870542

RESUMO

Cancer stem cells (CSCs) have been recognized as the culprit for tumor progression, treatment resistance, metastasis, and recurrence while redox homeostasis represents the Achilles' Heel of CSCs. However, few drugs or formulations that are capable of elevating oxidative stress have achieved clinical success for eliminating CSCs. Here, we report hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanoparticles (CuET@HES NPs), which conspicuously suppress CSCs not only in vitro but also in numerous tumor models in vivo. Furthermore, CuET@HES NPs effectively inhibit CSCs in fresh tumor tissues surgically excised from hepatocellular carcinoma patients. Mechanistically, we uncover that hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanocrystals via copper­oxygen coordination interactions, thereby promoting copper-diethyldithiocarbamate colloidal stability, cellular uptake, intracellular reactive oxygen species production, and CSCs apoptosis. As all components are widely used in clinics, CuET@HES NPs represent promising treatments for CSCs-rich solid malignancies and hold great clinical translational potentials. This study has critical implications for design of CSCs targeting nanomedicines.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Ditiocarb/química , Ditiocarb/farmacologia , Ditiocarb/uso terapêutico , Cobre/química , Nanopartículas/química , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Amido/química , Linhagem Celular Tumoral , Derivados de Hidroxietil Amido/farmacologia , Derivados de Hidroxietil Amido/uso terapêutico , Células-Tronco Neoplásicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA