Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Stem Cell Res ; 81: 103515, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39137556

RESUMO

Calmodulin mutations can cause life-threatening long QT syndrome involving CALM1, CALM2, and CALM3. In this study, human induced pluripotent stem cells ZZUNEUi030-A were derived from a female patient with heterozygous CALM2 gene c. 395A â†’ T by Sendai virus non-integrated reprogramming technology. The cell line showed a normal female karyotype (46, XX), expressed pluripotency markers, and had the ability to differentiate into three germ layers in vitro. ZZUNEUi030-A can be used as a cell disease model to study the pathogenesis of LQT caused by calmodulin mutations.

2.
Cell Death Discov ; 10(1): 142, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490981

RESUMO

Pleckstrin homology domain-containing family M member 2 (PLEKHM2) is an essential adaptor for lysosomal trafficking and its homozygous truncation have been reported to cause early onset dilated cardiomyopathy (DCM). However, the molecular mechanism of PLEKHM2 deficiency in DCM pathogenesis and progression is poorly understood. Here, we generated an in vitro model of PLEKHM2 knockout (KO) induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to elucidate the potential pathogenic mechanism of PLEKHM2-deficient cardiomyopathy. PLEKHM2-KO hiPSC-CMs developed disease phenotypes with reduced contractility and impaired calcium handling. Subsequent RNA sequencing (RNA-seq) analysis revealed altered expression of genes involved in mitochondrial function, autophagy and apoptosis in PLEKHM2-KO hiPSC-CMs. Further molecular experiments confirmed PLEKHM2 deficiency impaired autophagy and resulted in accumulation of damaged mitochondria, which triggered increased reactive oxygen species (ROS) levels and decreased mitochondrial membrane potential (Δψm). Importantly, the elevated ROS levels caused oxidative stress-induced damage to nearby healthy mitochondria, resulting in extensive Δψm destabilization, and ultimately leading to impaired mitochondrial function and myocardial contractility. Moreover, ROS inhibition attenuated oxidative stress-induced mitochondrial damage, thereby partially rescued PLEKHM2 deficiency-induced disease phenotypes. Remarkably, PLEKHM2-WT overexpression restored autophagic flux and rescued mitochondrial function and myocardial contractility in PLEKHM2-KO hiPSC-CMs. Taken together, these results suggested that impaired mitochondrial clearance and increased ROS levels play important roles in PLEKHM2-deficient cardiomyopathy, and PLEKHM2-WT overexpression can improve mitochondrial function and rescue PLEKHM2-deficient cardiomyopathy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA