Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(12): e202319587, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38226832

RESUMO

Radical cation salts of π-conjugated polycycles are rich in physical properties. Herein, two kinds of hetera-buckybowls, ethoxy-substituted trithiasumanene (3SEt) and triselenasumanene (3SeEt), are synthesized as electron donors. Galvanostatic oxidation of them affords radical cation salts (3SEt)5 (TTFMPB)3 , (3SeEt)5 (TTFMPB)3 , (3SEt)4 PMA, and (3SeEt)4 PMA, where PMA is Keggin-type phosphomolybdate and TTFMPB is tetrakis[3,5-bis(trifluoromethyl)-phenyl]borate. In these salts, 3SEt/3SeEt are partially charged and show distinct conformation change with the site charge and counter anions. In TTFMPB salts, (TTFMPB)- forms hexagonal channels that accommodate the packing columns of 3SEt/3SeEt. In particular, (3SEt)5 (TTFMPB)3 adopts the R3c space group and is a polar crystal with the columns of 3SEt all in the up-bowl direction. The PMA salts of 3SEt/3SeEt are polar crystals (C2 space group) with 3SEt/3SeEt being planar and forming columnar stacks. (3SeEt)4 PMA shows a structural modulation below 200 K, namely, negative thermal expansion (NTE) of the unit cell volume and enlargement of the intermolecular distances between neighboring 3SeEt molecules. The four salts are semiconductors with an activation energy of 0.18-0.38 eV. The conductivity of (3SeEt)4 PMA shows a reversible transition upon cooling and heating, in accordance to the NTE structural modulation. This work paves the way toward conducting materials based on hetera-buckybowls.

2.
Chemistry ; 29(72): e202303085, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37877318

RESUMO

Chiral π-conjugated polycycles have garnered increasing attention due to versatile applications in optoelectronic materials and biological sciences. In this study, we report the synthesis of chiral π-conjugated polycycles incorporating a chiral epoxycyclooctadiene moiety. Our synthetic strategy capitalizes on the novel reactions of hetera-buckybowl triselenasumanene (TSS) and is achieved in two-step manner. Firstly, the TSS is regio-selectively transformed into its ortho-quinone form. Subsequently, the nucleophilic addition reactions of TSS ortho-quinone by phenylethynides are metal ion-dependent. When utilizing (phenylethynyl)magnesium bromide as the nucleophile, two phenylethynyls are furnished onto the edged benzene ring of TSS. When the nucleophile is (phenylethynyl)lithium, a cascade of nucleophilic addition, intermolecular electron-transfer, ring-opening, and tetradehydro-Diels-Alder (TDDA) reactions occur sequentially in one-pot, ultimately affording chiral π-conjugated polycycles featuring the epoxycyclooctadiene moiety as an integral part of their backbones. This work represents a step forward in the synthesis of chiral π-conjugated polycycles using TSS as synthon.

3.
Angew Chem Int Ed Engl ; 61(44): e202210924, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36098932

RESUMO

Graphene nanoribbons (GNRs) are promising in organic optoelectronic materials, and their properties largely depend on the size, edge, and conformation. Herein, the fully armchair-edged GNRs (AGNRs) with lengths up to 2.65 nm by using a Cu-catalyzed deoxygenative coupling as a key step. The resulting AGNRs (2HBT, 3HBT, and 4HBT) possess highly twisted π-scaffolds, and the torsion angles between the adjacent triphenylene moieties are larger than 32°, as proved by crystallographic analyses. Theoretical and spectroscopic studies show that the butoxy groups endow AGNRs with electron-rich features, the extension of the π-system from 2HBT to 4HBT reinforces S0 →S1 excitation, and the distortion of the π-scaffold enhances the fluorescence quantum yield (ΦF ). In particular, 4HBT has the lowest oxidation potential (Eox 1 =0.55 V vs. SCE) and displays red fluorescence with a ΦF value of 81 %.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA