Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Environ Sci Technol ; 58(26): 11737-11747, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38889003

RESUMO

Despite frequent detection of high levels of perfluoroalkyl acids (PFAAs) in sediments, research on the environmental fate of PFAAs in sediments, particularly under hydrodynamic conditions, is rather limited, challenging effective management of PFAA loadings. Therefore, this study investigated the release and transport of 15 PFAAs in sediments under environmentally relevant flow velocities using recirculating flumes and revealed the underlying release mechanisms by identifying related momentum transfer. An increased velocity enhanced the release magnitude of total PFAAs by a factor of 3.09. The release capacity of short-chain PFAAs was notably higher than that of long-chain PFAAs, and this pattern was further amplified by flow velocity. Pore-water drainage was the major pathway for PFAA release, with the release amount predominantly determined by flow velocity-induced release intensity and depth, as well as affected by the perfluorocarbon chain length and sediment size. The weak anion exchanger-diffusion gradients in the thin-film technique confirmed that the release depth of PFAAs increased with flow velocity. Quadrant analysis revealed that the rise in the frequency and intensity of turbulent bursts driven by sweeps and ejections at high flow velocity was the underlying cause of the increased release magnitude and depth of PFAAs.


Assuntos
Fluorocarbonos , Sedimentos Geológicos , Sedimentos Geológicos/química , Poluentes Químicos da Água , Monitoramento Ambiental
2.
Environ Sci Technol ; 57(42): 16065-16074, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37843047

RESUMO

Understanding the mechanisms underlying perfluoroalkyl acids (PFAAs) translocation, distribution, and accumulation in wheat-soil ecosystems is essential for agricultural soil pollution control and crop ecological risk assessment. This study systematically investigated the translocation of 13 PFAAs under different iron and nitrogen fertilization conditions in a wheat-soil ecosystem. Short-chain PFAAs including PFBA, PFPeA, PFHxA, and PFBS mostly accumulated in soil solution (10.43-55.33%) and soluble extracellular polymeric substances (S-EPS) (11.39-14.77%) by the adsorption to amino- (-NH2) and hydroxyl (-OH) groups in dissolved organic matter (DOM). Other PFAAs with longer carbon chain lengths were mostly distributed on the soil particle surface by hydrophobic actions (74.63-94.24%). Iron-nitrogen amendments triggered (p < 0.05) soil iron-nitrogen cycling, rhizospheric reactive oxygen species fluctuations, and the concentration increases of -NH2 and -OH in the DOM structure. Thus, the accumulation capacity of PFAAs in soil solution and root EPS was increased. In sum, PFAAs' translocation from soil particles to wheat root was synergistically reduced by iron and nitrogen fertilization through increased adsorption of soil particles (p < 0.05) and the retention of soil solution and root EPSs. This study highlights the potential of iron-nitrogen amendments in decreasing the crop ecological risks to PFAAs' pollution.


Assuntos
Fluorocarbonos , Solo , Matéria Orgânica Dissolvida , Triticum , Ecossistema , Matriz Extracelular de Substâncias Poliméricas/química , Nitrogênio , Fluorocarbonos/análise
3.
Ecotoxicol Environ Saf ; 263: 115221, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37421893

RESUMO

Artificial sweeteners have sparked a heated debate worldwide due to their ambiguous impacts on public and environmental health and food safety and quality. Many studies on artificial sweeteners have been conducted; however, none scientometric studies exist in the field. This study aimed to elaborate on the knowledge creation and development of the field of artificial sweeteners and predict the frontiers of knowledge based on bibliometrics. In particular, this study combined VOSviewer, CiteSpace, and Bibliometrix to visualize the mapping of knowledge production, covered 2389 relevant scientific publications (1945-2022), and systematically analyzed articles and reviews (n = 2101). Scientific publications on artificial sweeteners have been growing at an annual rate of 6.28% and globally attracting 7979 contributors. Susan J. Brown with total publications (TP) of 17, average citation per article (AC) of 36.59, and Hirsch (h)-index of 12 and Robert F. Margolskee (TP = 12; AC = 2046; h-index = 11) were the most influential scholars. This field was clustered into four groups: eco-environment and toxicology, physicochemical mechanisms, public health and risks, and nutrition metabolism. The publications about environmental issues, in particular, "surface water," were most intensive during the last five years (2018-2022). Artificial sweeteners are gaining importance in the monitoring and assessment of environmental and public health. Results of the dual-map overlay showed that the future research frontiers tilt toward molecular biology, immunology, veterinary and animal sciences, and medicine. Findings of this study are conducive to identifying knowledge gaps and future research directions for scholars.


Assuntos
Bibliometria , Saúde Ambiental , Animais , Inocuidade dos Alimentos , Temperatura Alta , Estado Nutricional , Publicações
4.
J Environ Manage ; 348: 119232, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832298

RESUMO

The distribution and dynamics of antibiotic resistance genes (ARGs) in water-diversion lakes are poorly understood. In this study, two comparative in situ investigations of ARG profiles targeting water diversion (DP) and non-diversion periods (NDP) were conducted in Luoma Lake, a vital transfer node for the eastern route of the South-to-North Water Diversion Project in China. The results demonstrated significant spatiotemporal variations in ARG contamination and notable differences in the co-occurrence patterns of ARGs and bacterial communities between DP and NDP. Correlations among ARGs with the 16 S rRNA, and mobile genetic elements indicate that horizontal gene transfer (HGT) and vertical gene transfer (VGT) in NDP, but only HGT in DP, were the primary mechanisms of ARG proliferation and spread, implying that water diversion could be an essential control of the transfer pattern of ARGs in a lake environment. The null model analysis indicated that stochastic processes, with predominant driver of ecological drift in the lake mainly drove the assembly of ARGs. Partial least squares structural equation modeling was developed to analyze the causal effects of the factors in shaping ARG dynamics and identify the major driving forces in the DP and NDP.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Água , Resistência Microbiana a Medicamentos/genética , China
5.
J Environ Manage ; 332: 117421, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36739776

RESUMO

Turbulence generated within the vegetated confluence system is important for water quality and river management. In this study, we conducted a series of experiments to explore the extent to which emergent rigid vegetation in the confluence channel influences hydrodynamic characteristics and contaminant transport. First, a series of tests with increasing discharge ratios (from 0.35, 0.5, and 1) was conducted to quantify the effects of the discharge ratio on hydrodynamic conditions within the vegetated confluence. Then, tests with different discharge ratios were also set up to explore how contaminants released locations and modes (line and point source) influence the transport and mixing of contaminants. The results showed that increasing the discharge ratio induced larger momentum in the confluence area. The increase in discharge ratio rendered the circulation stronger, and its position came earlier in the non-vegetative area. In addition, the dimensionless turbulent kinetic energy peaked near the interface of the non/vegetated zone. With the increase in the discharge ratio, the dimensionless turbulent kinetic energy was found to be smaller. In the contaminants transport tests, the results revealed larger discharge ratio could speed up contaminants transport and mixing. The applications from this study would be helpful to pollutant transport management in natural confluences.


Assuntos
Poluentes Ambientais , Qualidade da Água , Rios , Hidrodinâmica
6.
Water Sci Technol ; 87(5): 1187-1201, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36919742

RESUMO

Inner coastal wetland ecosystems are generally eutrophic and are often exposed to both salinity stress and Escherichia coli pollution. However, the effects of these stressors on nutrient-cycling and microbial communities are under-researched. Here, we established a vegetated wetland ecosystem in a saline environment to understand the effects of E. coli pollution on nutrient removal and benthic microorganisms. The results show that E. coli significantly inhibited nutrient removal, especially total nitrogen (TN) and ammonium (78.89-84.98 and 3.45-44.65% were removed from the non-E. coli-treated and the E. coli-treated water, respectively). Compared with non-vegetated systems, archaeal community variations at both compositional and phylogenetic levels were weakened in vegetated systems (p < 0.05). Among all the environmental factors, the ratios of PO43--P to total phosphorus and NO3--N to TN contributed the most to archaeal and bacterial community structural variations, respectively. E. coli pollution affected archaeal community succession more than bacteria (p < 0.05). E. coli also weakened the trophic transferring efficiencies between Cyanobacteria and Myxobacteria (p < 0.05). Metabolically, E. coli inhibited bacterial genetic metabolic pathways but made human infection more likely (p < 0.05). Our findings provide new insights into aquatic ecological conservation and environmental management.


Assuntos
Ecossistema , Áreas Alagadas , Humanos , Salinidade , Filogenia , Bactérias/genética , Archaea/genética , Escherichia coli/genética , Nutrientes , Nitrogênio
7.
Environ Res ; 203: 111876, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34400162

RESUMO

Perfluorinated compounds (PFCs) pose serious threats to aquatic ecosystems, especially their microbial communities. However, little is known about the phylosymbiosis of aquatic fungal and viridiplantae communities in response to PFC accumulation. We quantified the distribution of 14 PFCs in rivers and found that PFBA was dominant in the transition from water to sediment. High through-put sequencing revealed that phyla Ascomycota, Basidiomycota, Anthophyta, and Chlorophyta were the predominant in eukaryotic community. The effects of PFCs on spatial community coalescence at taxonomic and phylogenetic levels (p < 0.05) were revealed. Fungal community coalescence triggered the spatial assembly of fungal and viridiplantae communities in riverine environments (p < 0.05). Null modeling indicated that PFBA, PFTrDA and PFOS, etc, mediated phylogenetic assembly (p < 0.05) and stochastic processes (86.67-100%) maintain phylogenetic turnover in the fungal community. Meanwhile, variable selection (27.78-54.44%) explained the viridiplantae community assemblage. Finally, we identified fungal genera Hannaella, Naganishia, Purpureocillium and Stachybotrys as indicators for PFC pollution (p < 0.001). These results help explain the effects of PFCs on riverine ecological remediation.


Assuntos
Fluorocarbonos , Microbiota , Poluentes Químicos da Água , Monitoramento Ambiental , Eucariotos , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Filogenia , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
8.
Environ Res ; 212(Pt B): 113334, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35452673

RESUMO

Constructed wetlands (CWs) are often used to treat wastewater discharged from wastewater treatment plants (WWTPs), while emerging contaminants (such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS)) have been commonly discovered in WWTPs. However, no research has examined whether PFOA/OS (i.e. PFOA and PFOS) affects the performance of CW. Therefore, this study compared the nutrient removal efficiencies of four CWs with varied configurations under PFOA/OS and no PFOA/OS stress conditions. We found that CW containing plants or/and iron-carbon had higher removal efficiency for nutrients (except NH4+-N) than conventional CW in stable operation under wastewater without PFOA/OS. Plants or/and iron increased the nutrient removal efficiency by plant uptake, chemical reaction, and co-precipitation of iron hydroxides. In contrast, the iron-carbon inhibited the nitrification of nitrifying bacteria by consuming dissolved oxygen, converting NO3--N to NH4+-N. Although the removal efficiencies of nutrients by CWs differed after introducing PFOA/OS, the removal order was consistent with those before adding PFOA/OS. Plants or/and iron-carbon effectively increased CWs' resistance to PFOA/OS loading and toxicity, and the function of iron-carbon was superior to the plants. In addition, PFOA/OS reduced the abundances of microbes Hydrogenophaga, Pseudomonas, Sphingomonas, Nitrospira, and Candidatus_Accumulibacter that contributed to nutrient removal.


Assuntos
Fluorocarbonos , Águas Residuárias , Bactérias , Carbono , Ferro , Nitrogênio/análise , Nutrientes , Eliminação de Resíduos Líquidos , Áreas Alagadas
9.
J Environ Manage ; 317: 115390, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35661881

RESUMO

Perfluoroalkyl acid (PFAA) exposure poses a potential hazard to wildlife and humans. Food consumption is one of the main routes of PFAA exposure for the general population, with aquatic organisms being the major contributors. To evaluate the risk of coastal residents' intake of wild aquatic organisms, 14 PFAAs were detected in crucian carp and oriental river prawn from 18 sampling sites from the lower reaches of Yangtze River. The total PFAA (∑PFAA) concentrations ranged from 5.9 to 51.3 ng/g wet weight (ww) in the muscle of crucian carp and river prawn, suggesting the potential risk to human and wildlife. Perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and long-chain PFAAs (C ≥ 10) were the main pollutants in the tissues of crucian carp and river prawn, which are known for their higher bioaccumulation capacity. The ∑PFAA concentration in all the samples showed an increasing trend from upstream to downstream and was higher in the south bank, owing to population density, prevailing winds, background pollution and industrial emission. Principal component analysis-multiple linear regression and Pearson correlation analysis showed that WWTP effluent, industrial pollution and surface runoff ware the main sources of PFAAs in the aquatic organisms and industrial pollution highest contributor, suggesting better regulation is needed to manage them. The assessment of risk to human health and wild life suggested a low risk for most residents of cities along the Yangtze River except for resident of Nantong, where frequent consumption of wild aquatic organisms may cause potential risk to human health, especially for traditional eaters and middle-aged people.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Organismos Aquáticos , China , Cidades , Monitoramento Ambiental , Fluorocarbonos/análise , Humanos , Pessoa de Meia-Idade , Rios , Poluentes Químicos da Água/análise
10.
J Environ Manage ; 305: 114436, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34999447

RESUMO

The impact of sluice operations on the distribution and fate of perfluoroalkyl acids (PFAAs) remains poorly understood. In this study, the distribution of PFAAs was investigated in water, suspended particles, sediment, and pore water from the upstream and downstream sections of six sluice gates along the Wangyu River, China. The target PFAAs were widely distributed in the dissolved phase (∑PFAAs: 447.61 ± 180.26 ng/L), particle phase (∑PFAAs: 2040.95 ± 1870.88 ng/g dw), sedimentary phase (∑PFAAs: 39.42 ± 35.38 ng/g dw), and pore water phase (∑PFAAs: 8172.54 ± 4278.60 ng/L). Our data suggest predominant detections of short-chain PFAAs such as perfluorobutanoic acid (PFBA) and perfluorohexanoic acid (PFHxA) in the four environmental media. Sediment pore water appeared as an essential repository and potential source for PFAA re-release to the river environment. The levels of PFAAs in the dissolved and suspended particle phase upstream of the sluices were significantly lower than those downstream, while the situation in the sediment and pore water phase was the opposite. Sluice operation caused PFAA redistribution among the multi-environment media but did not change the PFAA composition, which had the significant effect on the partition behavior of perfluoroalkyl carboxylic acids (PFCAs) between particles and water, as well as changed the migration pattern of PFOA, PFNA and PFOS from equilibrium to the migration state. Quantitative prediction models were developed for simulating fate of PFAAs in gate-controlled river, and the major factors affecting the distribution and fate of PFAAs were identified. Our findings provide insights into the redistribution mechanisms of PFAAs and an understanding of their environmental fate.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , China , Monitoramento Ambiental , Fluorocarbonos/análise , Rios , Poluentes Químicos da Água/análise
11.
Environ Res ; 194: 110733, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33434608

RESUMO

Perfluoroalkyl acids (PFAAs) are ubiquitous in various environments. This has caused great public concern, particularly in the shallow freshwater lake region, where the lake, rivers, and estuaries form a highly interconnected continuum. However, little is known about the environmental behaviors of PFAAs in the continuum. For the first time, a high-resolution monitoring framework covering the river-estuary-lake continuum of Luoma Lake was built, and the concentrations, sources, and environmental fates of PFAAs were identified and analyzed. The results revealed that the total concentration of PFAAs was at a moderate level in the water and at a high level in the sediment compared to global levels respectively. Perfluorooctanesulfonate (PFOS) was the most abundant PFAA in the continuum. In particular, the ∑PFAA concentration in the particle phase was much higher than that in the sediment phase. Distinct spatial heterogeneities were observed in the behaviors of distribution and the multiphase fate of PFAAs in the continuum, mainly driven by the turbulent mixing during transport, dilution of lake water, and spatial differences of hydrodynamic features and sedimentary properties among the sub-regions. Interestingly, the pH of the sediment and water had significant effects on the water-sediment portioning of PFAAs in contrasting ways. Furthermore, based on the composition of the sediments, four possible migration paths for PFAAs were deduced and the main sources of PFAAs were identified as sewage, domestic, and industrial effluents using the positive matrix factorization model. During the human health assessment, no risk was found under the median exposure scenario; however, under the high exposure scenario, PFAAs posed uncertain risks to human health, which cannot be ignored. This study provides basic information for simulating the fate and transport of PFAAs in the continuum and is significant for developing cost-effective control and remediation strategies in the near future.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , China , Monitoramento Ambiental , Fluorocarbonos/análise , Humanos , Lagos , Medição de Risco , Rios , Poluentes Químicos da Água/análise
12.
J Environ Manage ; 261: 110204, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148275

RESUMO

The effects of exogenous Escherichia coli on nitrogen cycling (N-cycling) in freshwater remains unclear. Thus, seven ecosystems, six with submerged plants-Potamogeton crispus (PC) and Myriophyllum aquaticum (MA)-and one with no plants were set up. Habitats were assessed before and after E. coli addition (107 colony-forming units/mL). E. coli colonization of freshwater ecosystems had significant effects on bacterial community structure in plant surface biofilms and surface sediments (ANOVA, P < 0.05). It reduced the relative abundance of nitrosification bacteria (-70.94 ± 26.17%) and nitrifiers (-47.86 ± 23.68%) in biofilms which lead to significant reduction of ammoxidation in water (P < 0.05). The N-cycling intensity from PC systems was affected more strongly by E. coli than were MA systems. Furthermore, the coupling coefficient of exogenous E. coli to indigenous N-cycling bacteria in sediments (6.061, average connectivity degree) was significantly weaker than that in biofilms (9.852). Additionally, at the genus level, E. coli were most-closely associated with N-cycling bacteria such as Prosthecobacter, Hydrogenophaga, and Bacillus in sediments and biofilms according to co-occurrence bacterial network (Spearman). E. coli directly changed their abundance, so that the variability of species composition of N-cycling bacterial taxa was triggered, as well. Overall, exogenous E. coli repressed ammoxidation, but promoted ammonification and denitrification. Our results provided new insights into how pathogens influence the nitrogen cycle in freshwater ecosystems.


Assuntos
Ecossistema , Escherichia coli , Bactérias , Nitrogênio , Ciclo do Nitrogênio
13.
Water Environ Res ; 89(11): 1988-1998, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28488570

RESUMO

The synergy effects of hydrodynamic conditions and cetyl trimethylammonium bromide (CTAB) on the distribution behavior of bisphenol A (BPA) in sediment have been investigated using particle entrainment simulator (PES) and water bath shaker. The results showed that when the concentration of CTAB is below its critical micelle concentration (CMC), the shear stress has almost no effect on the equilibrium sorption amount of BPA on sediment, which is mainly related to the surfactant concentration. The sorption rates in the rapid sorption phase increased with increasing CTAB content and shear stress. When the concentration of CTAB exceeded CMC, equilibrium sorption amount and corresponding time of BPA on sediment both decreased with increasing shear stress, mainly because the hydrodynamic conditions enhanced the solubilization ability of the surfactant on BPA. It was also found that the sorption rate constant showed a linear increase trend with increasing shear stress.


Assuntos
Compostos Benzidrílicos/química , Fenóis/química , Tensoativos/química , Cetrimônio , Compostos de Cetrimônio/química , Hidrodinâmica , Micelas , Resistência ao Cisalhamento , Solubilidade
14.
Water Sci Technol ; 70(2): 256-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25051472

RESUMO

The dispersion characteristics of braided rivers are presently unclear. The comprehensive flow structure in a physical braided river model was measured and was used to estimate its dispersion coefficient tensor. The largest values of the longitudinal and transverse dispersion coefficients occurred in the separation zone in two anabranches. The separation zone disappeared in a small diversion angle model of braided rivers where the coefficients were smaller. As for the sectional transverse distribution, the two coefficients varied markedly and an interesting negative correlation between them appeared in several sections. The dispersion coefficients increased with upstream flow rates. Comparison between the coefficients for different anabranch widths revealed higher values in wider sections. Finally, the values of the laboratory tests were compared with those in a real braided river, and relatively larger coefficients were found in natural rivers. The findings of this paper could be helpful in understanding the dispersion characteristics and in estimating pollutant concentration in braided rivers.


Assuntos
Rios/química , Movimentos da Água , Poluentes Químicos da Água/química , Monitoramento Ambiental/métodos
15.
Water Sci Technol ; 69(4): 687-93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24569265

RESUMO

For solving the multi-parameter identification problem of a river water quality model, analytical methods for solving a river water quality model and traditional optimization algorithms are very difficult to implement. A new parameter identification model based on a genetic algorithm (GA) coupled with finite difference method (FDM) was constructed for the determination of hydraulic and water quality parameters such as the longitudinal dispersion coefficient, the pollutant degradation coefficient, velocity, etc. In this model, GA is improved to promote convergence speed by adding the elite replacement operator after the mutation operator, and FDM is applied for unsteady flows. Moreover the influence of observation noise on identified parameters was discussed for the given model. The method was validated by two numerical cases (in steady and unsteady flows respectively) and one practical application. The computational results indicated that the model could give good identification precision results and showed good anti-noise abilities for water quality models when the noise level ≤10%.


Assuntos
Modelos Teóricos , Rios/química , Poluentes Químicos da Água/química , Poluição da Água/análise , Algoritmos , Monitoramento Ambiental/métodos , Abastecimento de Água
16.
Water Res ; 260: 121878, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38870860

RESUMO

Gen X and F-53B have been popularized as alternatives to PFOA and PFOS, respectively. These per(poly)fluoroalkyl substances pervasively coexist with microplastics (MPs) in aquatic environments. However, there are knowledge gaps regarding their potential eco-environmental risks. In this study, a typical free-floating macrophyte, Eichhornia crassipes (E. crassipes), was selected for hydroponic simulation of a single exposure to PFOA, PFOS, Gen X, and F-53B, and co-exposure with polystyrene (PS) microspheres. F-53B exhibited the highest bioaccumulation followed by Gen X, PFOA, and PFOS. In the presence of PS MPs, the bioavailabilities of the four PFASs shifted and the whole plant bioconcentration factors improved. All four PFASs induced severe lipid peroxidation, which was exacerbated by PS MPs. The highest integrated biomarker response (IBR) was observed for E. crassipes (IBR of shoot: 30.01, IBR of root: 22.79, and IBR of whole plant: 34.96) co-exposed to PS MPs and F-53B. The effect addition index (EAI) model revealed that PS MPs showed antagonistic toxicity with PFOA and PFOS (EAI < 0) and synergistic toxicity with Gen X and F-53B (EAI > 0). These results are helpful to compare the eco-environmental impacts of legacy and alternative PFASs for renewal process of PFAS consumption and provide toxicological, botanical, and ecoengineering insights under co-contamination with MPs.


Assuntos
Bioacumulação , Eichhornia , Microplásticos , Poliestirenos , Poluentes Químicos da Água , Poliestirenos/toxicidade , Microplásticos/toxicidade , Eichhornia/metabolismo , Poluentes Químicos da Água/toxicidade , Fluorocarbonos/toxicidade
17.
Sci Total Environ ; 916: 170394, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280584

RESUMO

Dense populations and industries in regions with developed inland waterways have caused the significant discharge of perfluoroalkyl acids (PFAAs) into surrounding waterways. Despite being the dominant energy input in the waterways, the impact of ship navigation on endogenous PFAA release is unclear. In this study, a field experiment was carried out in the Wangyu River (Taihu Basin, China) to investigate the spatiotemporal distribution processes of PFAAs in the water column after passage of ships with different tonnages, speeds, and draughts. The results showed that the PFAA contents did not decrease continuously with time but increased with a lag after the passing ship triggered a transient massive dissolution of PFAAs into the overlying water. In addition, PFAA contents in suspended particulate matter (SPM) exhibited a fluctuating downward trends after their peak at the moment of ship passage. Vertically, the PFAA concentrations among the layers of overlying water were relatively homogeneous, whereas SPM exhibited substantial heterogeneity in its distribution and adsorption of PFAAs. Moreover, the differences in jet scouring velocity (u), disturbance duration (t), and draught (h) of ships resulted in large variability in PFAA contents in the water column. Variance partitioning analysis further quantified the effects of u, t, and h on total PFAAs in the water column, with individual contributions of 53 %, 12 %, and 6 %, respectively. Furthermore, the release of endogenous PFAAs induced by ship passage involved rapid and slow processes, the former determining the overall PFAA release and the latter affecting PFAA concentration recovery in the water column. The findings provide in-situ observational data on spatiotemporal variations of PFAAs in multiphase media following ship passage, enhancing our understanding of endogenous pollution in inland waterways.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Água/análise , Adsorção , China , Ácidos Alcanossulfônicos/análise
18.
J Hazard Mater ; 474: 134778, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843637

RESUMO

Short-chained perfluoroalkyl acids (PFAAs, CnF2n+1-R, n ≤ 6) have merged as global concerns due to their extensive application and considerable toxicity. However, long-chained PFAAs (n ≥ 7) featured with high persistence are still ubiquitously observed in aquatic environment. To understand the uptake behavior of short-chained PFAAs in aquatic macrophytes, the uptake kinetics, bioconcentration, and translocation of short-chained PFAAs (3 ≤n ≤ 6) in two typical free-floating macrophytes (Eichhornia crassipes and Ceratophyllum demersum) were investigated in the treatments with and without long-chained PFAAs (7 ≤n ≤ 11). Results showed that short-chained PFAAs can be readily accumulated in both E. crassipes and C. demersum, and the uptake of short-chained PFAAs fit the two-compartment kinetic model well (p < 0.05). In the treatments with long-chained PFAAs, significant concentration decreases of all concerned short-chained PFAAs in E. crassipes and PFAAs with n ≤ 5 in C. demersum were observed. Long-chained PFAAs could hinder the uptake rates, bioconcentration factors, and translocation factors of most short-chained PFAAs in free-floating macrophytes (p < 0.01). Significant correlations between bioconcentration factors and perfluoroalkyl chain length were only observed when long-chained PFAAs were considered (p < 0.01). Our results underlined that the effects of long-chained PFAAs should be taken into consideration in understanding the uptake and bioaccumulation behaviors of short-chained PFAAs.


Assuntos
Eichhornia , Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/metabolismo , Eichhornia/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Bioacumulação
19.
Water Res ; 260: 121947, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38901312

RESUMO

The sediments in riverine environments contain notably high concentrations of perfluoroalkyl acids (PFAAs), which may be released into the water body under different hydrodynamic forces, such as those occurring at Y-shaped confluences. The release of PFAAs may pose a significant risk to the surrounding aquatic ecosystems. However, our understanding of the release and transport of PFAAs from sediments at Y-shaped confluences remains unclear. Thus, in this study, we performed a series of flume experiments to explore the effects of discharge ratio and total flow flux on the release and redistribution of PFAAs. The results indicated that these two parameters significantly affected the hydrodynamic features of confluences and the water physicochemical parameters. PFAA concentrations in the dissolved phase and suspended particulate matter (SPM) rose significantly as the discharge ratio and total flow flux increased. The dissolved phase was the predominant loading form of PFAAs, with short-chain PFAAs being the main kind, while long-chain PFAAs were dominant in the SPM. The spatial distribution pattern of PFAAs in sediments at the confluence exhibited a high degree of correspondence with hydrodynamic zones. The separation zone and maximum velocity zone were consistent with sediment regions with low and high capacities to release PFAAs, respectively. The patterns of variation in PFAA distribution were comparable to those observed in hydrodynamic zones as the discharge ratio and total flow flux varied. Furthermore, these two parameters altered the partitioning behaviors of PFAAs; specifically, the PFAAs in sediments tended to be released into the pore-water, while the liberated PFAAs tended to attach to SPM. Linear regression and correlation analyses suggested that the stream-wise and vertical flow velocity components near the sediment-water interface were the primary contributors to sediment suspension and PFAA exchange between the water column and pore-water. These findings will help us to understand the patterns of PFAA release in sediments at Y-shaped confluences and assist in the management of PFAA-contaminated sediments at these locations.


Assuntos
Fluorocarbonos , Sedimentos Geológicos , Hidrodinâmica , Poluentes Químicos da Água , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Fluorocarbonos/química , Fluorocarbonos/análise , Rios/química , Movimentos da Água , Monitoramento Ambiental
20.
Sci Total Environ ; 929: 172563, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641096

RESUMO

The dynamics and exposure risk behaviours of antibiotic resistance genes (ARGs) in the sediments of water-diversion lakes remain poorly understood. In this study, spatiotemporal investigations of ARG profiles in sediments targeting non-water (NWDP) and water diversion periods (WDP) were conducted in Luoma Lake, a typical water-diversion lake, and an innovative dynamics-based risk assessment framework was constructed to evaluate ARG exposure risks to local residents. ARGs in sediments were significantly more abundant in the WDP than in the NWDP, but there was no significant variation in their spatial distribution in either period. Moreover, the pattern of ARG dissemination in sediments was unchanged between the WDP and NWDP, with horizontal gene transfer (HGT) and vertical gene transfer (VGT) contributing to ARG dissemination in both periods. However, water diversion altered the pattern in lake water, with HGT and VGT in the NWDP but only HGT in the WDP, which were critical pathways for the dissemination of ARGs. The significantly lower ARG sediment-water partition coefficient in the WDP indicated that water diversion could shift the fate of ARGs and facilitate their aqueous partitioning. Risk assessment showed that all age groups faced a higher human exposure risk of ARGs (HERA) in the WDP than in the NWDP, with the 45-59 age group having the highest risk. Furthermore, HERA increased overall with the bacterial carrying capacity in the local environment and peaked when the carrying capacity reached three (NWDP) or four (WDP) orders of magnitude higher than the observed bacterial population. HGT and VGT promoted, whereas ODF covering gene mutation and loss mainly reduced HERA in the lake. As the carrying capacity increased, the relative contribution of ODF to HERA remained relatively stable, whereas the dominant mechanism of HERA development shifted from HGT to VGT.


Assuntos
Resistência Microbiana a Medicamentos , Exposição Ambiental , Resistência Microbiana a Medicamentos/genética , Lagos/microbiologia , Monitoramento Ambiental/métodos , Humanos , Exposição Ambiental/estatística & dados numéricos , Sedimentos Geológicos/microbiologia , Poluição da Água/estatística & dados numéricos , Análise Espaço-Temporal , Transferência Genética Horizontal , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA