Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 1268, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273153

RESUMO

The germline mutation landscape in Chinese lung cancer patients has not been well defined. In this study, sequencing data of 1,021 cancer genes of 1,794 Chinese lung cancer patients was analyzed. A total of 111 pathogenic or likely pathogenic germline mutations were identified, significantly higher than non-cancer individuals (111/1794 vs. 84/10,588, p < 2.2e-16). BRCA1/2 germline mutations are associated with earlier onset age (median 52.5 vs 60 years-old, p = 0.008). Among 29 cancer disposition genes with germline mutations detected in Chinese cohort and/or TCGA lung cancer cohort, Only 11 from 29 genes are identified in both cohorts and BRCA2 mutations are significantly more common in Chinese cohort (p = 0.015). Chinese patients with germline mutations have different prevalence of somatic KRAS, MET exon 14 skipping and TP53 mutations compared to those without. Our findings suggest potential ethnic and etiologic differences between Western and Asian lung cancer patients.


Assuntos
Neoplasias Pulmonares , Proteína BRCA1/genética , Proteína BRCA2/genética , China/epidemiologia , Predisposição Genética para Doença , Genômica , Mutação em Linhagem Germinativa , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade
2.
EBioMedicine ; 60: 102990, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32927274

RESUMO

BACKGROUND: Although TP53 co-mutation with KRAS/ATM/EGFR/STK11 have been proved to have predictive value for response to immune checkpoint inhibitors (ICIs), not all TP53 mutations are equal in this context. As the main part of TP53 mutant types, Missense and Nonsense alternations in TP53 as independent factors to predict the response to ICIs within Lung Adenocarcinoma (LUAD) patients have not yet been reported. METHODS: An integrated analysis based on multiple-dimensional data types including genomic, transcriptomic, proteomic and clinical data from published lung adenocarcinoma data and local database of LUAD taking immune checkpoint inhibitors. Gene set enrichment analysis (GSEA) was used to determine potentially relevant gene expression signatures between specific subgroups. Single-sample GSEA (GSVA) is conducted to calculate the score for enrichment of a set of genes regulating DNA damage repair (DDR) pathway. FINDINGS: The TP53-missense-mutation group showed increased PD-L1 (CD274) level and enriched IFN-γ signatures compared with the TP53-wild-type subgroup, but no differences were noted in patients with nonsense-mutant vs wild-type p53. Furthermore, a group of suppressor Immune cells like M2 Macrophage and Neutrophils are found enriched in nonsense group. On the other-side, both TP53 missense and nonsense mutations are associated with elevated TMB and neoantigen levels and contribute equally to DNA damage repair deficiency. The distribution regarding to multi-dimensional factors determining the efficacy of ICIs finally transformed into diverse clinical benefits for LUAD. TP53 missense but not -nonsense Mutants are associated with better clinical benefits taking antiPD-1/1L. However, all such TP53 subgroups responds well to nivolumab (antiPD-L1) plus ipilimumab (antiCTLA-4) therapy. INTERPRETATION: Our study demonstrated that not all TP53 mutations are equal in predicting efficacy in patients with LUAD treated with ICIs. Multi-center data showed that TP53 missense and nonsense mutations were significantly different in terms of associations with PD-L1 expression, IFN-γ signatures and TME composition. Special attention should be paid to potential TP53 mutation heterogeneity when evaluating TP53 status as biomarker for ICIs. FUNDING: The study was supported by Key Lab System Project of Guangdong Science and Technology Department - Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer (Grant No. 2017B030314120, to Yi-Long WU).


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Biomarcadores Tumorais , Mutação , Proteína Supressora de Tumor p53/genética , Adenocarcinoma de Pulmão/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Códon sem Sentido , Biologia Computacional/métodos , Dano ao DNA , Reparo do DNA , Perfilação da Expressão Gênica , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Janus Quinases , Estimativa de Kaplan-Meier , Terapia de Alvo Molecular , Mutação de Sentido Incorreto , Prognóstico , Fatores de Transcrição STAT , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Proteína Supressora de Tumor p53/metabolismo
3.
Sci Rep ; 3: 2303, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23892515

RESUMO

A novel removing polymerase chain reaction (R-PCR) technique was developed, which can eliminate undesired genes, cycle by cycle, with efficiencies of 60.9% (cDNAs), 73.6% (genomic DNAs), and ~ 100% (four DNA fragments were tested). Major components of the R-PCR include drivers, a thermostable restriction enzyme - ApeKI, and a poly(dA) adapter with mismatched restriction enzyme recognition sites. Drivers were generated from the undesired genes. In each cycle of R-PCR, drivers anneal to complementary sequences and allow extension by Taq DNA polymerase. Thus, ApeKI restriction sites in the undesired genes are recovered, and adapters of these undesired DNA fragments are removed. Using R-PCR, we isolated maize upregulated defense-responsive genes and Blumeria graminis specialized genes, including key pathogenesis-related effectors. Our results show that after the R-PCR reaction, most undesired genes, including very abundant genes, became undetectable. The R-PCR is an easy and cost-efficient method to eliminate undesired genes and clone desired genes.


Assuntos
Reação em Cadeia da Polimerase/métodos , Contaminação por DNA , Enzimas de Restrição do DNA/química , Estabilidade Enzimática , Temperatura Alta , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA