Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 32(7): 965-9, 2012 Jul.
Artigo em Zh | MEDLINE | ID: mdl-23019958

RESUMO

OBJECTIVE: To observe the expressions of Wnt/beta-catenin and the effects of tanshinone IIA (TII A) on Wnt/beta-catenin signaling pathway in high glucose induced renal tubular epithelial cell transdifferentiation. METHODS: Human kidney proximal tubular epithelial cells (HK-2) were divided into three groups, i. e., the normal glucose group, the high glucose group, and the high glucose plus tanshinone IIA group. The expression of beta-catenin was observed using immunocytochemical staining. The protein expression of beta-catenin, E-cadherin, and alpha-smooth muscle actin (alpha-SMA) were detected by Western blot. The mRNA levels of beta-catenin and E-cadherin were detected by RT-PCR. RESULTS: Compared with the normal glucose group, both the protein and the mRNA expressions of beta-catenin were significantly enhanced (P < 0.01), the expression of E-cadherin significantly decreased (P < 0.01), the expression of beta-catenin increased in the cytoplasm and nucleus in the high glucose group. TIIA at the final concentration of 100 micromol/L significantly reduced the ectopic expression of beta-catenin. At that concentration, the protein and mRNA expressions of beta-catenin in the nucleus significantly decreased, while the protein and mRNA expressions of E-cadherin were up-regulated. Meanwhile, the expression of alpha-SMA obviously decreased. CONCLUSIONS: Wnt/beta-catenin signaling pathway participated in the high glucose induced renal tubular epithelial cell transdifferentiation. TIIA inhibited the transdifferentiation process possibly through down-regulating the activities of Wnt/beta-catenin signaling pathway, thus further playing a role in renal protection.


Assuntos
Abietanos/farmacologia , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Antígenos CD , Caderinas/metabolismo , Linhagem Celular , Transdiferenciação Celular/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Glucose/efeitos adversos , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , beta Catenina/metabolismo
2.
Lancet Respir Med ; 10(8): 739-748, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35605625

RESUMO

BACKGROUND: Due to waning immunity and protection against infection with SARS-CoV-2, a third dose of a homologous or heterologous COVID-19 vaccine has been proposed by health agencies for individuals who were previously primed with two doses of an inactivated COVID-19 vaccine. METHODS: We did a randomised, open-label, controlled trial to evaluate the safety and immunogenicity of heterologous boost immunisation with an orally administered aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in Chinese adults (≥18 years old) who had previously received two doses of an inactivated SARS-CoV-2 vaccine-Sinovac CoronaVac. Eligible participants were randomly assigned (1:1:1) to receive a heterologous booster vaccination with a low dose (1·0 × 1011 viral particles per mL; 0·1 mL; low dose group), or a high dose (1·0 × 1011 viral particles per mL; 0·2 mL; high dose group) aerosolised Ad5-nCoV, or a homologous intramuscular vaccination with CoronaVac (0·5 mL). Only laboratory staff were masked to group assignment. The primary endpoint for safety was the incidence of adverse reactions within 14 days after the booster dose. The primary endpoint for immunogenicity was the geometric mean titres (GMTs) of serum neutralising antibodies (NAbs) against live SARS-CoV-2 virus 14 days after the booster dose. This study was registered with ClinicalTrials.gov, NCT05043259. FINDINGS: Between Sept 14 and 16, 2021, 420 participants were enrolled: 140 (33%) participants per group. Adverse reactions were reported by 26 (19%) participants in the low dose group and 33 (24%) in the high dose group within 14 days after the booster vaccination, significantly less than the 54 (39%) participants in the CoronaVac group (p<0·0001). The low dose group had a serum NAb GMT of 744·4 (95% CI 520·1-1065·6) and the high dose group had a GMT of 714·1 (479·4-1063·7) 14 days after booster dose, significantly higher than the GMT in the CoronaVac group (78·5 [60·5-101·7]; p<0·0001). INTERPRETATION: We found that a heterologous booster vaccine with an orally administered aerosolised Ad5-nCoV is safe and highly immunogenic in adults who have previously received two doses of CoronaVac as the primary series vaccination. FUNDING: National Natural Science Foundation of China and Jiangsu Provincial Key Research and Development Program.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adolescente , Adulto , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , Pesquisa , SARS-CoV-2 , Vacinação
3.
Chin Med J (Engl) ; 134(17): 2048-2053, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34402479

RESUMO

BACKGROUND: With the ongoing worldwide coronavirus disease 2019 (COVID-19) pandemic, an increasing number of viral variants are being identified, which poses a challenge for nucleic acid-based diagnostic tests. Rapid tests, such as real-time reverse transcription-polymerase chain reaction (rRT-PCR), play an important role in monitoring COVID-19 infection and controlling its spread. However, the changes in the genotypes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants may result in decreased sensitivity of the rRT-PCR assay and it is necessary to monitor the mutations in primers and probes of SARS-CoV-2 detection over time. METHODS: We developed two rRT-PCR assays to detect the RNA-dependent RNA polymerase (RdRp) and nucleocapsid (N) genes of SARS-CoV-2. We evaluated these assays together with our previously published assays targeting the ORF1ab and N genes for the detection and confirmation of SARS-CoV-2 and its variants of concern (VOCs). In addition, we also developed two rRT-PCR assays (S484K and S501Y) targeting the spike gene, which when combined with the open reading frames (ORF)1ab assay, respectively, to form duplex rRT-PCR assays, were able to detect SARS-CoV-2 VOCs (lineages B.1.351 and B.1.1.7). RESULTS: Using a SARS-CoV-2 stock with predetermined genomic copies as a standard, the detection limit of both assays targeting RdRp and N was five copies/reaction. Furthermore, no cross-reactions with six others human CoVs (229E, OC43, NL63, HKU1, severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus) were observed using these assays. In addition, the S484K and S501Y assays were combined with the ORF1ab assay, respectively. CONCLUSIONS: Four rRT-PCR assays (RdRp, N, S484K, and S501Y) were used to detect SARS-CoV-2 variants, and these assays were shown to be effective in screening for multiple virus strains.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Reversa , Sensibilidade e Especificidade
4.
Chin Med J (Engl) ; 134(11): 1289-1298, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33928916

RESUMO

BACKGROUND: The significant morbidity and mortality resulted from the infection of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) call for urgent development of effective and safe vaccines. We report the immunogenicity and safety of an inactivated SARS-CoV-2 vaccine, KCONVAC, in healthy adults. METHODS: Phase 1 and phase 2 randomized, double-blind, and placebo-controlled trials of KCONVAC were conducted in healthy Chinese adults aged 18 to 59 years. The participants in the phase 1 trial were randomized to receive two doses, one each on Days 0 and 14, of either KCONVAC (5 or 10 µg/dose) or placebo. The participants in the phase 2 trial were randomized to receive either KCONVAC (at 5 or 10 µg/dose) or placebo on Days 0 and 14 (0/14 regimen) or Days 0 and 28 (0/28 regimen). In the phase 1 trial, the primary safety endpoint was the proportion of participants experiencing adverse reactions/events within 28 days following the administration of each dose. In the phase 2 trial, the primary immunogenicity endpoints were neutralization antibody seroconversion and titer and anti-receptor-binding domain immunoglobulin G seroconversion at 28 days after the second dose. RESULTS: In the phase 1 trial, 60 participants were enrolled and received at least one dose of 5-µg vaccine (n = 24), 10-µg vaccine (n = 24), or placebo (n = 12). In the phase 2 trial, 500 participants were enrolled and received at least one dose of 5-µg vaccine (n = 100 for 0/14 or 0/28 regimens), 10-µg vaccine (n = 100 for each regimen), or placebo (n = 50 for each regimen). In the phase 1 trial, 13 (54%), 11 (46%), and seven (7/12) participants reported at least one adverse event (AE) after receiving 5-, 10-µg vaccine, or placebo, respectively. In the phase 2 trial, 16 (16%), 19 (19%), and nine (18%) 0/14-regimen participants reported at least one AE after receiving 5-, 10-µg vaccine, or placebo, respectively. Similar AE incidences were observed in the three 0/28-regimen treatment groups. No AEs with an intensity of grade 3+ were reported, expect for one vaccine-unrelated serious AE (foot fracture) reported in the phase 1 trial. KCONVAC induced significant antibody responses; 0/28 regimen showed a higher immune responses than that did 0/14 regimen after receiving two vaccine doses. CONCLUSIONS: Both doses of KCONVAC are well tolerated and able to induce robust immune responses in healthy adults. These results support testing 5-µg vaccine in the 0/28 regimen in an upcoming phase 3 efficacy trial. TRIAL REGISTRATION: http://www.chictr.org.cn/index.aspx (No. ChiCTR2000038804, http://www.chictr.org.cn/showproj.aspx?proj=62350; No. ChiCTR2000039462, http://www.chictr.org.cn/showproj.aspx?proj=63353).


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Vacinas contra COVID-19 , Método Duplo-Cego , Humanos , Vacinas de Produtos Inativados/efeitos adversos
5.
Emerg Microbes Infect ; 9(1): 2105-2113, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32893735

RESUMO

The global pandemic of coronavirus disease 2019 (COVID-19) is a disaster for human society. A convenient and reliable neutralization assay is very important for the development of vaccines and novel drugs. In this study, a G protein-deficient vesicular stomatitis virus (VSVdG) bearing a truncated spike protein (S with C-terminal 18 amino acid truncation) was compared to that bearing the full-length spike protein of SARS-CoV-2 and showed much higher efficiency. A neutralization assay was established based on VSV-SARS-CoV-2-Sdel18 pseudovirus and hACE2-overexpressing BHK21 cells (BHK21-hACE2 cells). The experimental results can be obtained by automatically counting the number of EGFP-positive cells at 12 h after infection, making the assay convenient and high-throughput. The serum neutralizing titer measured by the VSV-SARS-CoV-2-Sdel18 pseudovirus assay has a good correlation with that measured by the wild type SARS-CoV-2 assay. Seven neutralizing monoclonal antibodies targeting the receptor binding domain (RBD) of the SARS-CoV-2 S protein were obtained. This efficient and reliable pseudovirus assay model could facilitate the development of new drugs and vaccines.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Infecções por Coronavirus/diagnóstico , Testes de Neutralização/métodos , Pneumonia Viral/diagnóstico , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19 , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/imunologia
6.
Mol Genet Genomic Med ; 7(6): e697, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31033252

RESUMO

BACKGROUND: Trichilemmal cysts (TCs) are common intradermal or subcutaneous cysts, which are commonly sporadic and rarely autosomal dominantly inherited. However, little is known about the disease-determining genes in families with TCs exhibiting Mendelian inheritance. OBJECTIVE: The aim of this study was to identify the causative gene in a family with TCs. METHODS: Whole-exome sequencing was performed on a TCs family to identify the candidate gene. Sanger sequencing was conducted to validate the candidate variants and familial segregation. RESULTS: We identified the heterozygous variant c.3G>C (p.Met1?) within the BPIFC gene. Sanger sequencing confirmed the cosegregation of this variant with the TCs phenotype in the family by demonstrating the presence of the heterozygous variant in all the 12 affected and absence in all the seven unaffected individuals. This variant was found to be absent in dbSNP141, 1,000 Genomes database and 500 ethnicity matched controls. CONCLUSION: Our results imply that BPIFC is a causative gene in this Chinese family with hereditary TCs. Further studies should be performed to validate the role of BPIFC in the pathogenesis of this disease.


Assuntos
Proteínas de Transporte/genética , Cisto Epidérmico/genética , Mutação , Cisto Epidérmico/patologia , Feminino , Heterozigoto , Humanos , Masculino , Linhagem
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 36(12): 1700-1705, 2016 Dec 20.
Artigo em Zh | MEDLINE | ID: mdl-27998868

RESUMO

OBJECTIVE: To explore the role of miR-205 in regulating epithelial-messenchymal transition (EMT) in proximal tubular cell line HK-2 cells and the underlying mechanism. METHODS: HK-2 cells transfected with miR-205 mimics or a scrambled control sequence were examined for miR-205 expressions and mRNA levels of ZEB1, E-cadherin, and α-SMA using real-time qPCR; the protein levels of ZEB1, ZEB2, E-cadherin, and α-SMA were detected with Western blotting. Immunohistochemistry was performed to examine the ectopic expression of ß-catenin and E-cadherin expression in the cells. RESULTS: The expression levels of ZEB1 and ZEB2 decreased significantly (P<0.01) while E-cadherin expression was up-regulated (P<0.01) in cells transfected with miR-205 mimics. Transfection with miR-205 mimics also markedly down-regulated the expression of α-SMA (P<0.01), a marker of mesenchymal cells that play an important role in EMT of HK-2 cells. The ectopic expression of ß-catenin was inhibited by miR-205 mimics in HK-2 cells. CONCLUSION: miR-205 inhibits EMT in HK-2 cells by down-regulating the expression levels of ZEB1 and ZEB2.


Assuntos
Regulação para Baixo , Proteínas de Homeodomínio , Túbulos Renais Proximais/metabolismo , MicroRNAs/fisiologia , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Actinas , Antígenos CD , Caderinas , Transição Epitelial-Mesenquimal , Humanos , RNA Mensageiro , Proteínas Repressoras , Fatores de Transcrição , Regulação para Cima , beta Catenina
9.
Artigo em Zh | MEDLINE | ID: mdl-23002543

RESUMO

OBJECTIVE: To character HBV antigen expression in vitro and in vivo transduced by different transgenic plasmids carrying infectious genome of hepatitis B virus (HBV). METHODS: We constructed four different lentiviral transfer plasmids (carrying 1.3 full-length genome of HBV, by replacing the EGFP express box in pCS-CG plasmid with HBV genome and with different structural element, named as pCS-HBV1.3 (pCS-HBV1.3 X, pCS-HBV1.3 P, pCS-HBV1.3 N and pCS-HBV1.3 K). We detected the expression of HBsAg and HBeAg by ELISA in different time after transfected Huh 7 cells or hydrodynamic injection into C57 BL/6 mice with transfer plasmids pCS-HBV, respectively. RESULTS: We detected significant expression of HBsAg over 5 days after transfected Huh 7 cells (in vitro) or hydrodynamic injection into C57 BL/6 mice (in vivo) with transfer plasmids pCS-HBV1.3 X, pCS-HBV1.3 P and pCS-HBV1.3 K. The expression level and dynamics of HBsAg and HBeAg in the sera of mice is consistent with that of in the supernatant of Huh-7 cell. Furthermore, the expression of HBV antigens were modulated by the direction and position of HBV insert, also by some lentiviral vector cis-elements (cPPT and RRE). CONCLUSION: The optimal lentiviral transfer plasmids (pCS-HBV1.3 X, pCS-HBV1.3 P and pCS-HBV1.3 K) could be further used for establishment and application of HBV transgenic cell or animal model.


Assuntos
Genoma Viral , Antígenos da Hepatite B/genética , Transdução Genética/métodos , Animais , Modelos Animais de Doenças , Feminino , Lentivirus/genética , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos
10.
Bing Du Xue Bao ; 27(1): 50-7, 2011 Jan.
Artigo em Zh | MEDLINE | ID: mdl-21462506

RESUMO

To efficiently express nucleoprotein (NP) of influenza A virus A/Jingke/30/95 (H3N2) in E. coli for further immunogenicity study, three forms of NP gene, NP(His) (NP fused with 6 x His tag), NPwt (wild type NP, non-fused NP with native codon) and NP(O) (codon optimized, non-fused NP) were cloned by the technologies of restriction enzyme digestion, PCR, codon optimization and gene synthesis. Three recombinant plasmids were subsequently constructed based on the prokaryotic vector pET-30a, respectively. The comparative studies with these plasmids were carried out on the gene expression efficiency, induction temperature and time, purification process and immune reactivity. It was confirmed by restriction enzyme digestion and sequencing analysis that the three NP genes were inserted into the expression plasmid pET-30a correctly. SDS-PAGE showed that all three forms of NP gene could be efficiently ex pressed in E. coli, among which NP(O) was expressed with the highest expression level. The lower temperature fermentation (T=25 degrees C) and longer time induction (t=10 h) were necessary for high-level expression of protein in soluble form. The purity of tag-free NP was up to 90% through the two-step purification process with anion-exchange and gel filtration chromatography. It was indicated by Western blot that purified NP reacted well with the serum from mice immunized with PR8 virus. These results suggest that the codon-optimized influenza A virus NP gene can be efficiently expressed in E. coli and the expressed NP protein with specific immune reactivity could be purified from the supernatant of bacterial lysate.


Assuntos
Escherichia coli/genética , Expressão Gênica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas do Core Viral/genética , Proteínas do Core Viral/isolamento & purificação , Animais , Clonagem Molecular , Escherichia coli/metabolismo , Humanos , Proteínas do Nucleocapsídeo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Solubilidade , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo
11.
Artigo em Zh | MEDLINE | ID: mdl-21863626

RESUMO

OBJECTIVE: To evaluate the seasonal influenza spilt vaccine's immunogenicity and the 50% effective dose (ED50a) of hemagglutin (HA) that can make 50% of the mice hemagglutination inhibition antibody (HI) titers to 40. METHODS: The 2008-2009 seasonal influenza spilt vaccine's two components, with HA from H1N1 and H3N2 influenza virus respectively, were used as a model. Mice were immunized once or twice with different doses, and the HI antibody titers were tested to determine the immunization procedure and to evaluate the immugenicity of seasonal influenza spilt vaccine in mice; Consequently, HI antibody response kinetics of the two components were observed to determine the time point when the HI antibody titer reached the peak point; Finally, mice were immunized with different doses of HA to evaluate the ED50a that can make 50% of mice HI titers reach 40. RESULTS: Immunization procedures study showed that one-dose of seasonal influenza vaccine induced the HI antibody titers ranged from 10 to 120, while two-dose of influenza vaccine improved the HI antibody titer 10-100 times as compared with one dose; antibody kinetics study suggested that the time point of HI antibody produced to peak is 28-35 days post one dose immunization; and the ED50a detection results indicated that one dose of 1.5 microg HA could make 50% of the mice HI antibody titer reach 40. CONCLUSION: Seasonal influenza spilt vaccine is very immunogenic in mouse; the time point of HI antibody produced to peak is 28-35 days post one dose immunization; and the ED50a of HA is 1.5 microg, which can make 50% of the mice HI titer reach 40. The experimental results provided foundation for the establishment of influenza vaccine evaluation system based on seasonal influenza vaccine.


Assuntos
Hemaglutininas Virais/administração & dosagem , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Testes de Inibição da Hemaglutinação , Hemaglutininas Virais/imunologia , Humanos , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estações do Ano
12.
Bing Du Xue Bao ; 27(3): 265-73, 2011 May.
Artigo em Zh | MEDLINE | ID: mdl-21774253

RESUMO

To investigate the seasonal influenza split vaccine's immune protective effectiveness against the homologous and heterogonous subtypes of influenza A virus challenge and the relationship between the protective effectiveness and hemagglutination inhibition (HI) antibody titer in mice. Two components of H1N1 and H3N2 in Chinese 2008-2009 seasonal influenza spilt vaccine, were derived from vaccine strain A/Brisbane/59/2007 (H1N1)-like virus and A/Brisbane/10/2007 (H3N2)-like virus respectively, and were used to immune BALB/c mice. Firstly, different doses of the vaccines were used to immunize mice and the HA immunization dosage that can induce the HI antibody titer of 40 in mice was identified; Secondly, H1N1 vaccine immunized mice were challenged with different doses of influenza virus mouse adaptation strains of A/Brisbane/59/2007 (H1N1)-like virus (MA) (referred to as A1 virus, well matched-strain in the homologous subtype) and A/Purto Rico/8/34 (H1N1) (referred to as PR8 virus, poor matched-strain in the homologous subtype) respectively, and H3N2 vaccine immunized mice were challenged with H1N1 influenza virus of A1 strain (Heterogonous subtype), body weight changes and survival rates were observed to explore the immune protective effectiveness of influenza split vaccine against the homologous and heterogonous subtypes of influenza A virus in mice. Results indicated that HI antibody titers were elevated as the HA protein immunization dosages increased from 0.15 microg, 0.5 microg, 1.5 microg, 5 microg to 15 microg in mice, and 1.5 microg HA of the seasonal influenza split vaccine could induced HI antibody titer of 40 in mice; 3LD50, 10LD50, 30LD50, 100LD50, 300LD50,1000LD50 and 3000LD50 of influenza virus strain A1 were used to challenge the H1N1 immunization mice, 1.5 microg HA of H1N1 vaccine could 100% protect mice against challenge with 1000LD50 of matched and homologous subtype of influenza virus strains A1, mice immunized with 15 microg HA of H1N1 vaccine even could 100% protect mice against challenge with 3000LD50 of influenza virus strains A1; but mice immunized with both the 1.5 microg and 15 microg HA of H1N1 vaccine were all sacrificed when challenged with 3LD50 of the mismatched and homologous subtype of influenza virus strain PR8, and mice immunized with the high dosage of 15 microg HA of H3N2 vaccine also were all sacrificed when challenged with 3LD50 of the heterogonous subtype of influenza virus strain A1. These results suggest that 1.5 microg HA of seasonal influenza split vaccine could induced HI antibody titer of 40 after one dose in mice, this dosage of HA can effectively protect mice against matched homologous subtype of influenza virus strain, but hardly to protect mice against mismatched homologous or heterogonous subtype of influenza virus strain. These results provide materials for the establishment of influenza vaccine evaluation system based on seasonal influenza vaccine.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Anticorpos Antivirais/sangue , Células Cultivadas , Embrião de Galinha , Cães , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Vacinação
13.
Bing Du Xue Bao ; 23(5): 377-83, 2007 Sep.
Artigo em Zh | MEDLINE | ID: mdl-17969855

RESUMO

To construct a recombinant vaccinia virus RVJ1175M2 expressing influenza A3 virus (H3N2) M2 gene, full length gene encoding influenza virus (H3N2) M2 protein was amplified with PCR and cloned into plasmid pJSC1175 which was used for homologous recombination with vaccinia virus Tiantan strain. Along with this, a recombinant vaccinia virus RVJ1175M2 containing the M2 gene was subsequently constructed. It was identified by PCR that the gene of M2 protein was inserted into the TK locus of vaccinia virus Tiantan strain correctly and M2 protein was expressed by recombinant vaccinia virus RVJ1175M2 effectively. Two electrophoretic bands of M2 protein expressed by the infected HeLa cells, one of 15kD and the other of 13kD in accordance with related documents, was deteced by Western-blot. M2 protein distributing on the surface of the infected cells was demonstrated by immunofluorescence and flow cytometry. The results suggested that recombinant vaccinia virus RVJ1175M2 could express M2 protein effectively, this laid a foundation for comparative research on the immune effect of universal vaccine of influenza virus with different kinds of vaccine expressing M2 protein.


Assuntos
Vírus da Influenza A Subtipo H3N2/genética , Vaccinia virus/genética , Proteínas da Matriz Viral/genética , Células HeLa , Humanos , Vacinas contra Influenza/imunologia , Reação em Cadeia da Polimerase , Proteínas Recombinantes/biossíntese , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA