Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 184(8): 2212-2228.e12, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33713620

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause acute respiratory disease and multiorgan failure. Finding human host factors that are essential for SARS-CoV-2 infection could facilitate the formulation of treatment strategies. Using a human kidney cell line-HK-2-that is highly susceptible to SARS-CoV-2, we performed a genome-wide RNAi screen and identified virus dependency factors (VDFs), which play regulatory roles in biological pathways linked to clinical manifestations of SARS-CoV-2 infection. We found a role for a secretory form of SARS-CoV-2 receptor, soluble angiotensin converting enzyme 2 (sACE2), in SARS-CoV-2 infection. Further investigation revealed that SARS-CoV-2 exploits receptor-mediated endocytosis through interaction between its spike with sACE2 or sACE2-vasopressin via AT1 or AVPR1B, respectively. Our identification of VDFs and the regulatory effect of sACE2 on SARS-CoV-2 infection shed insight into pathogenesis and cell entry mechanisms of SARS-CoV-2 as well as potential treatment strategies for COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vasopressinas/imunologia , Internalização do Vírus , COVID-19/imunologia , COVID-19/virologia , Linhagem Celular , Humanos , Ligação Proteica
3.
Phys Chem Chem Phys ; 26(18): 14062-14070, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38686605

RESUMO

In recent years, two-dimensional (2D) transition metal halides (such as CrI3) have received more and more attention for the practical applications of spintronic devices due to their unique electronic and magnetic properties. However, most 2D transition metal halides are centrosymmetric and are non-polar, which hinders their applications on nonvolatile memories. Here, on the basis of first-principles calculations, we predict that the adsorption of K single-atoms on the ScCl3 monolayer (denoted as K@ScCl3) could break the structural centrosymmetry and induce a reversible large out-of-plane electric polarization. Simultaneously, the adsorption of K single-atoms induces a magnetic moment localized on Sc ions, which forms a ferromagnetic order with an estimated Curie temperature of ∼37 K. These make the K@ScCl3 monolayer a ferromagnetic ferroelectric semiconductor. These findings propose a new route to realize 2D multiferroic materials, which is of great significance for the research and development of spintronics.

4.
Phys Chem Chem Phys ; 25(46): 31628-31635, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37982294

RESUMO

Two-dimensional (2D) layered transition metal dichalcogenides such as MoS2 have been viewed as the most favorable candidates for replacing noble metals in catalyzing the hydrogen evolution reaction in water splitting owing to their earth abundance, superb chemical stability, and appropriate Gibbs free energy. However, due to its low number of catalytic sites and basal catalytic inertia, the pristine MoS2 displayed intrinsically unsatisfactory HER catalytic activity. Here, the hydrogen evolution catalytic activities of nanostructured MoS2 powder before and after plasma modification with nitrogen doping were experimentally compared, and the influence of treatment parameters on the hydrogen evolution catalytic performance of MoS2 has been studied. The feasibility of regulating hydrogen evolution catalytic activity by nitrogen doping of MoS2 was verified based on density functional theory calculations. Our work demonstrates a more convenient and faster way to develop cheap and efficient MoS2-based catalysts for electrochemical hydrogen evolution reactions. Additionally, theoretical studies reveal that N-doped MoS2 exhibits strong hybridization between Mo-d and N-p states, causing magnetism to evolve, as confirmed by experiments.

5.
Nano Lett ; 22(13): 5191-5197, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35639726

RESUMO

Electrical control of magnetic order in van der Waals (vdW) two-dimensional (2D) systems is appealing for high-efficiency and low-dissipation nanospintronic devices. For realistic applications, a vdW 2D material with ferromagnetic (FM) and ferroelectric (FE) orders coexisting and strongly coupling at room temperature is urgently needed. Here we present a potential candidate for nonvolatile electric-field control of magnetic orders at room temperature. Using first-principles calculations, we predict the coexistence of room-temperature FM and FE orders in a 2D transition metal carbide, where the spatial distribution of magnetic moments strongly couples with the orientation of out-of-plane electric polarization. Furthermore, an electric-field switching between interfacial FM and ferrimagnetic orders is realizable through constructing a multiferroic vdW heterostructure based on this material. These findings make a significant step toward realizing room-temperature multiferroicity and strong magnetoelectric coupling in 2D materials.

6.
Small ; 18(42): e2204143, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36108133

RESUMO

Magnetic field enhanced electrocatalysis has recently emerged as a promising strategy for the development of a viable and sustainable hydrogen economy via water oxidation. Generally, the effects of magnetic field enhanced electrocatalysis are complex including magnetothermal, magnetohydrodynamic and spin selectivity effects. However, the exploration of magnetic field effect on the structure regulation of electrocatalyst is still unclear whereas is also essential for underpinning the mechanism of magnetic enhancement on the electrocatalytic oxygen evolution reaction (OER) process. Here, it is identified that in a mixed NiFe2 O4 (NFO), a large magnetic field can force the Ni2+ cations to migrate from the octahedral (Oh ) sites to tetrahedral (Td ) sites. As a result, the magnetized NFO electrocatalyst (NFO-M) shows a two-fold higher current density than that of the pristine NFO in alkaline electrolytes. The OER enhancement of NFO is also observed at 1 T (NFO@1T) under an operando magnetic field. Our first-principles calculations further confirm the mechanism of magnetic field driven structure regulation and resultant OER enhancement. These findings provide a strategy of manipulating tetrahedral units of spinel oxides by a magnetic field on boosting OER performance.

7.
Phys Rev Lett ; 128(6): 067601, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35213175

RESUMO

van der Waals materials possess an innate layer degree of freedom and thus are excellent candidates for exploring emergent two-dimensional ferroelectricity induced by interlayer translation. However, despite being theoretically predicted, experimental realization of this type of ferroelectricity is scarce at the current stage. Here, we demonstrate robust sliding ferroelectricity in semiconducting 1T^{'}-ReS_{2} multilayers via a combined study of theory and experiment. Room-temperature vertical ferroelectricity is observed in two-dimensional 1T^{'}-ReS_{2} with layer number N≥2. The electric polarization stems from the uncompensated charge transfer between layers and can be switched by interlayer sliding. For bilayer 1T^{'}-ReS_{2}, the ferroelectric transition temperature is estimated to be ∼405 K from the second harmonic generation measurements. Our results highlight the importance of interlayer engineering in the realization of atomic-scale ferroelectricity.

8.
Chemistry ; 28(43): e202201034, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35674444

RESUMO

The CO2 reduction reaction (CRR) represents a promising route for the clean utilization of renewable resources. But mass-transfer limitations seriously hinder the forward step. Enhancing the surface hydrophobicity by using polymers has been proved to be one of the most efficient strategies. However, as macromolecular organics, polymers on the surface hinder the transfer of charge carriers from catalysts to reactants. Herein, we describe an in-situ surface fluorination strategy to enhance the surface hydrophobicity of TiO2 without a barrier layer of organics, thus facilitating the mass transfer of CO2 to catalysts and charge transfer. With less obstruction to charge transfer, a higher CO2, and lower H+ surface concentration, the photocatalytic CRR generation rate of methanol (CH3 OH) is greatly enhanced to up to 247.15 µmol g-1 h-1 . Furthermore, we investigated the overall defects; enhancing the surface hydrophobicity of catalysts provides a general and reliable method to improve the competitiveness of CRR.

9.
Phys Rev Lett ; 124(6): 067602, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32109087

RESUMO

Controlling magnetism of two-dimensional multiferroics by an external electric field provides special opportunities for both fundamental research and future development of low-cost electronic nanodevices. Here, we report a general scheme for realizing a magnetic phase transition in 2D type-I multiferroic systems through the reversal of ferroelectric polarization. Based on first-principles calculations, we demonstrate that a single-phase 2D multiferroic, namely, ReWCl_{6} monolayer, exhibits two different low-symmetric (C_{2}) phases with opposite in-plane electric polarization and different magnetic order. As a result, an antiferromagnetic-to-ferromagnetic phase transition can be realized by reversing the in-plane electric polarization through the application of an external electric field. These findings not only enrich the 2D multiferroic family, but also uncover a unique and general mechanism to control magnetism by electric field, thus stimulating experimental interest.

10.
Phys Chem Chem Phys ; 22(2): 512-517, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31828254

RESUMO

Spontaneous orbital symmetry breaking in crystals gives rise to abundant novel and interesting physical properties, which sometimes are concealed by the absence of geometrical distortions. We show that a recently discovered 3d2 system, namely the layered VI3 ferromagnetic semiconductor, is a strongly correlated and orbital ordering system. Our analysis reveals that in a VI3-like system, there could be two types of orbital splitting, which are stabilized respectively by strong electronic correlation and inter-atomic exchange interactions. Consequently, on the basis of first-principles calculations, two competing low-energy phases of VI3 monolayer (denoted as twin orbital-order phases) are discovered, in which the metal-insulator transition is driven by strong electronic correlation, and the orbital symmetry breaking is robust against geometrical distortions. In addition, similar phenomena are also observed in other VI3-like systems. These findings shed light on the unusual electronic behavior of a strongly correlated 2D system and will be interesting for nanoscale multi-functional spintronic applications.

11.
J Am Chem Soc ; 141(31): 12413-12418, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31309834

RESUMO

Ferromagnetic semiconductors exhibit novel spin-dependent optical, electrical, and transport properties, which are promising for next-generation highly functional spintronic devices. However, the possibility of practical applications is hindered by their low Curie temperature. Currently, whether semiconducting ferromagnetism can exist at room temperature is still unclear because of the absence of a solid physical mechanism. Here, on the basis of tight-binding model analysis and first-principles calculations, we report that ferromagnetism in a tetrahedral semiconductor originating from superexchange interactions can be strong enough to survive at room temperature because of the weakening of antiferromagnetic direct-exchange interactions. On the basis of the explored mechanism, a zinc-blende binary transition metal compound, chromium carbide, is predicted to be an intrinsic ferromagnetic tetrahedral semiconductor with a Curie temperature that is as high as ∼1900 K. These findings not only expand the understandings of magnetism in semiconductors but also are of great interest for room-temperature spintronic applications.

12.
J Am Chem Soc ; 140(36): 11519-11525, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30130098

RESUMO

Two-dimensional (2D) ferromagnetic semiconductors have been recognized as the cornerstone for next-generation electric devices, but the development is highly limited by the weak ferromagnetic coupling and low Curie temperature ( TC). Here, we reported a general mechanism which can significantly enhance the ferromagnetic coupling in 2D semiconductors without introducing carriers. On the basis of a double-orbital model, we revealed that the superexchange-driven ferromagnetism is closely related to the virtual exchange gap, and lowering this gap by isovalent alloying can significantly enhance the ferromagnetic (FM) coupling. On the basis of the experimentally available two-dimensional CrI3 and CrGeTe3, the FM coupling in two semiconducting alloy compounds CrWI6 and CrWGe2Te6 monolayers are calculated to be enhanced by 3∼5 times without introducing any carriers. Furthermore, a room-temperature ferromagnetic semiconductor is achieved under a small in-plane strain (4%). Thus, our findings not only deepen the understanding of FM semiconductors but also open a new door for realistic spintronics.

13.
Phys Rev Lett ; 120(14): 147601, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29694145

RESUMO

The realization of multiferroics in nanostructures, combined with a large electric dipole and ferromagnetic ordering, could lead to new applications, such as high-density multistate data storage. Although multiferroics have been broadly studied for decades, ferromagnetic ferroelectricity is rarely explored, especially in two-dimensional (2D) systems. Here we report the discovery of 2D ferromagnetic ferroelectricity in layered transition-metal halide systems. On the basis of first-principles calculations, we reveal that a charged CrBr_{3} monolayer exhibits in-plane multiferroicity, which is ensured by the combination of orbital and charge ordering as realized by the asymmetric Jahn-Teller distortions of octahedral Cr─Br_{6} units. As an example, we further show that (CrBr_{3})_{2}Li is a ferromagnetic ferroelectric multiferroic. The explored phenomena and mechanism of multiferroics in this 2D system not only are useful for fundamental research in multiferroics but also enable a wide range of applications in nanodevices.

14.
J Phys Chem A ; 122(17): 4350-4356, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29668279

RESUMO

In spite of decades of research, a fundamental understanding of the unusual magnetic behavior of small Mn clusters remains a challenge. Experiments show that Mn2 is antiferromagnetic while small clusters containing up to five Mn atoms are ferromagnetic with magnetic moments of 5 µB/atom and become ferrimagnetic as they grow further. Theoretical studies based on density functional theory (DFT), however, find Mn2 to be ferromagnetic, with ferrimagnetic order setting in at different sizes that depend upon the computational methods used. While quantum chemical techniques correctly account for the antiferromagnetic ground state of Mn2, they are computationally too demanding to treat larger clusters, making it difficult to understand the evolution of magnetism. These studies clearly point to the importance of correlation and the need to find ways to treat it effectively for larger clusters and nanostructures. Here, we show that the DFT+ U method can be used to account for strong correlation. We determine the on-site Coulomb correlation, Hubbard U self-consistently by using the linear response theory and study its effect on the magnetic coupling of Mn clusters containing up to five atoms. With a calculated U value of 4.8 eV, we show that the ground state of Mn2 is antiferromagnetic with a Mn-Mn distance of 3.34 Å, which agrees well with the electron spin resonance experiment. Equally important, we show that on-site Coulomb correlation also plays an important role in the evolution of magnetic coupling in larger clusters, as the results differ significantly from standard DFT calculations. We conclude that for a proper understanding of magnetism of Mn nanostructures (clusters, chains, and layers) one must take into account the effect of strong correlation.

15.
Nano Lett ; 15(12): 8277-81, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26575002

RESUMO

High-temperature ferromagnetic two-dimensional (2D) materials with flat surfaces have been a long-sought goal due to their potential in spintronics applications. Through comprehensive first-principles calculations, we show that the recently synthesized MoN2 monolayer is such a material; it is ferromagnetic with a Curie temperature of nearly 420 K, which is higher than that of any flat 2D magnetic materials studied to date. This novel property, made possible by the electron-deficient nitrogen ions, render transition-metal dinitrides monolayers with unique electronic properties which can be switched from the ferromagnetic metals in MoN2, ZrN2, and TcN2 to half-metallic ones in YN2. Transition-metal dinitrides monolayers may, therefore, serve as good candidates for spintronics devices.

16.
Phys Chem Chem Phys ; 16(47): 25755-9, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25363756

RESUMO

Porous graphene is a promising material for the realization of low-cost, large-area and lightweight gas separation. However, molecular-sieving membranes based on porous materials reported thus far generally cannot fulfill the requirements of both high permeability and high selectivity. Simultaneously meeting the goals of high permeability and high selectivity remains a great challenge. As we demonstrate here, with the development of an inter-layer-connected porous graphene bilayer, both the permeability and selectivity are significantly improved, and a high criterion of selectivity for H2 over CH4 (10(24) at room temperature) as well as a high flux of H2 (2.4 × 10(5) Gas Permeance Unit) has been reached. Our studies highlight a new approach towards the final goal of high-permeability and high-selectivity molecular-sieving membranes using simple structural engineering.

17.
Chem Sci ; 15(5): 1638-1647, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303942

RESUMO

The overall photocatalytic CO2 reduction reaction presents an eco-friendly approach for generating high-value products, specifically ethanol. However, ethanol production still faces efficiency issues (typically formation rates <605 µmol g-1 h-1). One significant challenge arises from the difficulty of continuously transporting CO2 to the catalyst surface, leading to inadequate gas reactant concentration at reactive sites. Here, we develop a mesoporous superhydrophobic Cu2O hollow structure (O-CHS) for efficient gas transport. O-CHS is designed to float on an aqueous solution and act as a nano fence, effectively impeding water infiltration into its inner space and enabling CO2 accumulation within. As CO2 is consumed at reactive sites, O-CHS serves as a gas transport channel and diffuser, continuously and promptly conveying CO2 from the gas phase to the reactive sites. This ensures a stable high CO2 concentration at reactive sites. Consequently, O-CHS achieves the highest recorded ethanol formation rate (996.18 µmol g-1 h-1) to the best of our knowledge. This strategy combines surface engineering with geometric modulation, providing a promising pathway for multi-carbon production.

18.
IEEE/ACM Trans Comput Biol Bioinform ; 20(5): 2639-2646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35976826

RESUMO

Tuberculosis is a very deadly disease, with more than half of all tuberculosis cases dead in countries and regions with relatively poor health care resources. Fortunately, the disease is curable, and early diagnosis and medication can go a long way toward curing TB patients. Unfortunately, traditional methods of TB diagnosis rely on specialist doctors, which is lacking in areas with high TB mortality rates. Diagnostic methods based on artificial intelligence technology are one of the solutions to this problem. We propose a Deep Transferred EfficientNet with SVM (DTE-SVM), which replaces the pre-trained EfficientNet classification layer with an SVM classifier and achieves auspicious performance on a small dataset. After ten runs of 10-fold Cross-Validation, the DTE-SVM has a sensitivity of 93.89±1.96, a specificity of 95.35±1.31, a precision of 95.30±1.24, an accuracy of 94.62±1.00, and an F1-score of 94.62±1.00. In addition, our study conducted ablation studies on the effect of the SVM classifier on model performance and briefly discussed the results.

19.
Nanoscale ; 13(30): 13048-13056, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34477788

RESUMO

Two-dimensional (2D) multiferroic materials with the coexistence of electric and spin polarization offer a tantalizing potential for high-density multistate data storage. However, intrinsic 2D multiferroic semiconductors with high thermal stability are still rare to date. Here, we propose a new mechanism of single-phase multiferroicity. Based on first-principles calculations, we predicted that in a CrO3 monolayer, the unconventional distortion of the square antiprismatic crystal field on Cr-d orbitals will induce an in-plane electric polarization, making this material a single-phase multiferroic semiconductor. Importantly, the magnetic Curie temperature is estimated to be ∼220 K, which is quite high as compared to those of the recently reported 2D ferromagnetic and multiferroic semiconductors. Moreover, both ferroelectric and antiferroelectric phases are observed, providing opportunities for electrical control of magnetism and energy storage and conversion applications. These findings provide a comprehensive understanding of the magnetic and electric behavior in 2D multiferroics and will motivate further research on the application of related 2D electromagnetics and spintronics.

20.
Acta Pharm Sin B ; 11(8): 2362-2395, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34522591

RESUMO

Metal-organic frameworks (MOFs), comprised of organic ligands and metal ions/metal clusters via coordinative bonds are highly porous, crystalline materials. Their tunable porosity, chemical composition, size and shape, and easy surface functionalization make this large family more and more popular for drug delivery. There is a growing interest over the last decades in the design of engineered MOFs with controlled sizes for a variety of biomedical applications. This article presents an overall review and perspectives of MOFs-based drug delivery systems (DDSs), starting with the MOFs classification adapted for DDSs based on the types of constituting metals and ligands. Then, the synthesis and characterization of MOFs for DDSs are developed, followed by the drug loading strategies, applications, biopharmaceutics and quality control. Importantly, a variety of representative applications of MOFs are detailed from a point of view of applications in pharmaceutics, diseases therapy and advanced DDSs. In particular, the biopharmaceutics and quality control of MOFs-based DDSs are summarized with critical issues to be addressed. Finally, challenges in MOFs development for DDSs are discussed, such as biostability, biosafety, biopharmaceutics and nomenclature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA