Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 30(3): 4402-4411, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209678

RESUMO

A method employing femtosecond lasers to inscribe helical long period fiber grating (HLPFG) for exciting orbital angular momentum (OAM) of light is experimentally demonstrated. In this method, the refractive index modulation (RIM) of HLPFG is realized by three-dimensional translation of a fiber without rotation, indicating better stability, repeatability and flexibility. The coupling efficiency can be customized by varying the radius of the helical RIM, except laser energy. The characteristics of phase and polarization purity of the coupled modes in HLPFGs are studied. Results show that HLPFGs can directly excite OAM modes, the polarization state and helical phase of the mode can be adjusted independently, and the purity is the highest at resonant wavelength, over 91%.

2.
Opt Express ; 30(16): 28745-28751, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299063

RESUMO

We experimentally demonstrated an all-fiber reflective orbital angular momentum (OAM) generator based on orthogonal fiber Bragg grating (OFBG). The OFBG is formed by using a femtosecond laser to prepare two fiber Bragg gratings with a certain spacing in orthogonal planes. The ±1st- and ±2nd-order OAM modes were directly excited in this OFBG, and the chirality of the OAM modes depends on the relative positions of the two FBGs. The mode coupling properties and effects of center-to-center distance on OAM modes were investigated as well.

3.
Sensors (Basel) ; 22(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35270957

RESUMO

A novel optical fiber sensing technology based on intensity distribution change in orbital angular momentum (OAM) mode is proposed and implemented herein. The technology utilizes a chiral long-period fiber grating (CLPFG) to directly excite the 1st-order OAM (OAM1) mode. The intensity changes in the coherent superposition state between the fundamental mode and the OAM1 mode at the non-resonant wavelength of the CLPFG is tracked in order to sense the external parameters applied to the grating area. Applying this technology to temperature measurement, the intensity distribution change has a good linear relationship with respect to temperature in the range of 30 °C to 100 °C. When the intensity was denoted by the number of pixels with a gray value of one after binarization of collected images, the sensitivity was 103 px/°C and the corresponding resolution was 0.0097 °C. Meanwhile, theoretical and experimental results show that the sensitivity and resolution can be further improved via changing the area of the collected image. Compared with sensing methods based on spiral interference pattern rotation in previous work, this sensing technology has the advantage of exquisite structure, easy realization, and good stability, thus making it a potential application in practices.

4.
Opt Express ; 29(18): 28452-28460, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34614976

RESUMO

Optical orbital angular momentum (OAM) has been recently implemented in holography technologies as an independent degree of freedom for boosting information capacity. However, the holography capacity and fidelity suffer from the limited space-bandwidth product (SBP) and the channel crosstalk, albeit the OAM mode set exploited as multiplexing channels is theoretically unbounded. Here, we propose the ultra-dense perfect OAM holography, in which the OAM modes are discriminated both radially and angularly. As such, the perfect OAM mode set constructs the two-dimensional spatial division multiplexed holography (conventional OAM holography is 1D). The extending degree of freedom enhances the holography capacity and fidelity. We have demonstrated an ultra-fine fractional OAM holography with the topological charge resolution of 0.01. A 20-digit OAM-encoded holography encryption has also been exhibited. It harnesses only five angular OAM topological charges ranging from -16 to +16. The SBP efficiency is about 20 times larger than the conventional phase-only OAM holography. This work paves the way to compact, high-security and high-capacity holography.

5.
Opt Express ; 29(24): 39384-39394, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809304

RESUMO

A class of ultra-short chiral long period fiber gratings (CLPFGs) are prepared by writing a spiral curve on the surface of a six-mode fiber. The CLPFGs are applied to excite ±2nd- and ±3rd-order orbital angular momentum (OAM) modes. The coupling efficiency of the CLPFG in these modes can be as high as 99%, when the length is only 0.5cm. The polarization characteristic of the excited higher-order OAM modes in CLPFGs was theoretically analyzed and experimentally investigated. Results show that the obtained ±2nd- and ±3rd-order OAM modes are polarization independent, as expected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA