Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34640707

RESUMO

In this paper, a novel approach for raindrop size distribution retrieval using dual-polarized microwave signals from low Earth orbit satellites is proposed. The feasibility of this approach is studied through modelling and simulating the retrieval system which includes multiple ground receivers equipped with signal-to-noise ratio estimators and a low Earth orbit satellite communicating with the receivers using both vertically and horizontally polarized signals. Our analysis suggests that the dual-polarized links offer the opportunity to estimate two independent raindrop size distribution parameters. To achieve that, the vertical and horizontal polarization attenuations need to be measured at low elevation angles where the difference between them is more distinct. Two synthetic rain fields are generated to test the performance of the retrieval. Simulation results suggest that the specific attenuations for both link types can be retrieved through a least-squares algorithm. They also confirm that the specific attenuation ratio of vertically to horizontally polarized signals can be used to retrieve the slope and intercept parameters of raindrop size distribution.

2.
IEEE Trans Neural Netw Learn Syst ; 26(12): 3009-20, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25706894

RESUMO

In this paper, we propose a new blind learning algorithm, namely, the Benveniste-Goursat input-output decision (BG-IOD), to enhance the convergence performance of neural network-based equalizers for nonlinear channel equalization. In contrast to conventional blind learning algorithms, where only the output of the equalizer is employed for updating system parameters, the BG-IOD exploits a new type of extra information, the input decision information obtained from the input of the equalizer, to mitigate the influence of the nonlinear equalizer structure on parameters learning, thereby leading to improved convergence performance. We prove that, with the input decision information, a desirable convergence capability that the output symbol error rate (SER) is always less than the input SER if the input SER is below a threshold, can be achieved. Then, the BG soft-switching technique is employed to combine the merits of both input and output decision information, where the former is used to guarantee SER convergence and the latter is to improve SER performance. Simulation results show that the proposed algorithm outperforms conventional blind learning algorithms, such as stochastic quadratic distance and dual mode constant modulus algorithm, in terms of both convergence performance and SER performance, for nonlinear equalization.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25215778

RESUMO

We generate time series from scale-free networks based on a finite-memory random walk traversing the network. These time series reveal topological and functional properties of networks via their temporal correlations. Remarkably, networks with different node-degree mixing patterns exhibit distinct self-similar characteristics. In particular, assortative networks are transformed into time series with long-range correlation, while disassortative networks are transformed into time series exhibiting anticorrelation. These relationships are consistent across a diverse variety of real networks. Moreover, we show that multiscale analysis of these time series can describe and classify various physical networks ranging from social and technological to biological networks according to their functional origin. These results suggest that there is a unified dynamical mechanism that governs the structural organization of many seemingly different networks.


Assuntos
Dinâmica não Linear , Análise por Conglomerados , Entropia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA