RESUMO
G-protein coupled receptor kinase 2 (GRK2), which is upregulated in the failing heart, appears to play a critical role in heart failure (HF) progression in part because enhanced GRK2 activity promotes dysfunction of ß-adrenergic signaling and myocyte death. An orally bioavailable GRK2 inhibitor could offer unique therapeutic outcomes that cannot be attained by current heart failure treatments that directly target GPCRs or angiotensin-converting enzyme. Herein, we describe the discovery of a potent, selective, and orally bioavailable GRK2 inhibitor, 8h, through high-throughput screening, hit-to-lead optimization, structure-based design, molecular modelling, synthesis, and biological evaluation. In the cellular target engagement assays, 8h enhances isoproterenol-mediated cyclic adenosine 3',5'-monophosphate (cAMP) production in HEK293 cells overexpressing GRK2. Compound 8h was further evaluated in a human stem cell-derived cardiomyocyte (HSC-CM) contractility assay and potentiated isoproterenol-induced beating rate in HSC-CMs.
Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Ftalazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Animais , Ensaios Enzimáticos , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Estrutura Molecular , Miócitos Cardíacos/efeitos dos fármacos , Ftalazinas/síntese química , Ftalazinas/farmacocinética , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Quinazolinas/síntese química , Quinazolinas/metabolismo , Quinazolinas/farmacocinética , Relação Estrutura-AtividadeRESUMO
JNJ-64179375 (JNJ-9375) is a recombinant human IgG4 monoclonal antibody engineered to mimic an IgA antibody that was identified in a patient who exhibited markedly prolonged clotting times but without spontaneous bleeding episodes over several years of follow-up. The crystal structure of the JNJ-9375 antigen-binding fragment/thrombin complex showed an almost identical binding mode to that of the patient IgA. In the current study, we characterized the in vitro and in vivo properties of JNJ-9375. Surface plasmon resonance studies demonstrated that JNJ-9375 binds to α-thrombin with high affinity and specificity (K D: 0.8 nM for human thrombin). JNJ-9375 produced concentration-dependent prolongation of in vitro clotting assays in human plasma, including thrombin time (TT), ecarin clotting time, prothrombin time, and activated partial thromboplastin time, with EC2X values of 4.4, 12.4, 172.6, and 202.7 µg/ml, respectively. JNJ-9375 inhibited thrombin-induced platelet aggregation in human plasma with an IC50 value of 52.6 nM (7.8 µg/ml) and produced concentration-dependent prolongation of reaction time tested by thromboelastography. JNJ-9375 pretreatment resulted in dose-dependent reduction in thrombus formation in the rat arteriovenous (AV) shunt model of thrombosis. Robust efficacy was observed at 0.3 mg/kg accompanied by 1.5× of TT. Bleeding was increased at 3 mg/kg in a rat tail transection bleeding model demonstrating a therapeutic index of 10× compared with 1× for apixaban in the same models. Our data suggest that thrombin exosite I inhibition is efficacious against thrombosis in a pretreatment prevention animal model. SIGNIFICANCE STATEMENT: JNJ-9375 is a novel, fully human monoclonal antibody that binds to the exosite I region of thrombin with high affinity and specificity. JNJ-9375 concentration dependently prolonged clotting times and inhibited thrombin-induced platelet aggregation in in vitro assays based on its mechanism of action. In an in vivo rat AV shunt model, JNJ-9375 prevented thrombus formation in a dose-dependent fashion while demonstrating reduced bleeding risk. The present study demonstrated the antithrombotic effects of inhibiting the exosite I region of thrombin when given in a prevention mode in preclinical animal models.
Assuntos
Anticorpos Monoclonais/farmacologia , Antitrombinas/farmacologia , Imunoglobulina G/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Proteínas Recombinantes/farmacologia , Animais , Anticorpos Monoclonais/metabolismo , Antitrombinas/metabolismo , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Relação Dose-Resposta a Droga , Humanos , Imunoglobulina G/metabolismo , Macaca fascicularis , Masculino , Camundongos , Inibidores da Agregação Plaquetária/metabolismo , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismoRESUMO
BACKGROUND AND PURPOSE: Antigen-binding fragment (Fab ) reversal agents were developed to reverse, in bleeding emergency, the long-acting anticoagulant effect of JNJ-64179375 (JNJ-9375), a monoclonal antibody that binds exosite-1 on thrombin. EXPERIMENTAL APPROACH: The pharmacokinetic and pharmacodynamic (PK/PD) activities of three reversal agents of varying in vitro binding affinities to JNJ-9375 were characterised in cynomolgus monkeys. The time course of JNJ-9375 anticoagulant activity and reversal effects of each agent were evaluated. A mechanism-based PK/PD model, which integrated free serum concentrations of reversal agent, total and free serum concentrations of JNJ-9375, and thrombin time, was developed to quantitatively relate JNJ-9375 neutralisation to reversal of induced thrombin time prolongation. Model-based allometric scale-up of the lead reversal agent and the PK/PD relationship of JNJ-9375 in healthy volunteers were utilised to predict clinical dosing regimens. KEY RESULTS: Lowering of free JNJ-9375 by the reversal agents corresponded with reversal of thrombin time prolongation. Total JNJ-9375 displayed typical mAb clearance at 2.75 ml·day-1 ·kg-1 , whereas reversal agents cleared faster between 1400 and 2400 ml·day-1 ·kg-1 . The model-estimated in vivo KD values for JNJ-9375 reversal agents were 9 nM (ICHB-256), 0.4 nM (ICHB-281) and 13.7 pM (ICHB-164), in rank-ordered agreement of their KD values determined in vitro. The three reversal agents exhibited different neutralisation characteristics in vivo, governed primarily by their binding kinetics to JNJ-9375. The model predicted a priori free JNJ-9375 kinetics after dosing ICHB-164 (JNJ-67842125) and JNJ-9375 under a different regimen. CONCLUSION AND IMPLICATIONS: The results enabled selection of JNJ-67842125 as the reversal agent for JNJ-9375.