Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
New Phytol ; 220(2): 624-635, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30028022

RESUMO

Following allopolyploid formation, extensive genome evolution occurs, with the eventual loss of many homeologous gene copies. Although this process of diploidization has occurred many times independently, the evolutionary forces determining the probability and rate of gene loss remain poorly understood. Here, we conduct genome and transcriptome sequencing in a broad sample of Chinese accessions of Capsella bursa-pastoris, a recently formed allotetraploid. Our whole genome data reveal three groups of these accessions: an Eastern group from low-altitude regions, a Western group from high-altitude regions, and a much more differentiated Northwestern group. Population differentiation in total expression was limited among closely related populations; by contrast, the relative expression of the two homeologous copies closely mirrors the genome-wide SNP divergence. Consistent with this, we observe a negative correlation between expression changes in the two homeologues. However, genes showing population genomic evidence for adaptive evolution do not show an enrichment for expression divergence between homeologues, providing no clear evidence for adaptive shifts in relative gene expression. Overall, these patterns suggest that neutral drift may contribute to the population differentiation in the expression of the homeologues, and drive eventual gene loss over longer periods of time.


Assuntos
Capsella/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Tetraploidia , Genética Populacional , Genoma de Planta , Geografia , Polimorfismo de Nucleotídeo Único/genética , Homologia de Sequência de Aminoácidos
2.
Am J Bot ; 103(7): 1197-202, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27440791

RESUMO

PREMISE OF THE STUDY: Shifts in ploidy affect the evolutionary dynamics of genomes in a myriad of ways. Population genetic theory predicts that transposable element (TE) proliferation may follow because the genomewide efficacy of selection should be reduced and the increase in gene copies may mask the deleterious effects of TE insertions. Moreover, in allopolyploids, TEs may further accumulate because of hybrid breakdown of TE silencing. However, to date the evidence of TE proliferation following an increase in ploidy is mixed, and the relative importance of relaxed selection vs. silencing breakdown remains unclear. METHODS: We used high-coverage whole-genome sequence data to evaluate the abundance, genomic distribution, and population frequencies of TEs in the self-fertilizing recent allotetraploid Capsella bursa-pastoris (Brassicaceae). We then compared the C. bursa-pastoris TE profile with that of its two parental diploid species, outcrossing C. grandiflora and self-fertilizing C. orientalis. KEY RESULTS: We found no evidence that C. bursa-pastoris has experienced a large genomewide proliferation of TEs relative to its parental species. However, when centromeric regions are excluded, we found evidence of significantly higher abundance of retrotransposons in C. bursa-pastoris along the gene-rich chromosome arms compared with C. grandiflora and C. orientalis. CONCLUSIONS: The lack of a genomewide effect of allopolyploidy on TE abundance, combined with the increases TE abundance in gene-rich regions, suggests that relaxed selection rather than hybrid breakdown of host silencing explains the TE accumulation in C. bursa-pastoris.


Assuntos
Capsella/genética , Genética Populacional , Poliploidia , Evolução Biológica , Diploide , Frequência do Gene , Tamanho do Genoma , Polinização , Autofertilização
3.
Hortic Res ; 11(5): uhae079, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38766534

RESUMO

Musa ornata and Musa velutina are members of the Musaceae family and are indigenous to the South and Southeast Asia. They are very popular in the horticultural market, but the lack of genomic sequencing data and genetic studies has hampered efforts to improve their ornamental value. In this study, we generated the first chromosome-level genome assemblies for both species by utilizing Oxford Nanopore long reads and Hi-C reads. The genomes of M. ornata and M. velutina were assembled into 11 pseudochromosomes with genome sizes of 427.85 Mb and 478.10 Mb, respectively. Repetitive sequences comprised 46.70% and 50.91% of the total genomes for M. ornata and M. velutina, respectively. Differentially expressed gene (DEG) and Gene Ontology (GO) enrichment analyses indicated that upregulated genes in the mature pericarps of M. velutina were mainly associated with the saccharide metabolic processes, particularly at the cell wall and extracellular region. Furthermore, we identified polygalacturonase (PG) genes that exhibited higher expression level in mature pericarps of M. velutina compared to other tissues, potentially being accountable for pericarp dehiscence. This study also identified genes associated with anthocyanin biosynthesis pathway. Taken together, the chromosomal-level genome assemblies of M. ornata and M. velutina provide valuable insights into the mechanism of pericarp dehiscence and anthocyanin biosynthesis in banana, which will significantly contribute to future genetic and molecular breeding efforts.

4.
Hortic Res ; 10(9): uhad153, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701454

RESUMO

Banana is one of the most important crops of the world. Cavendish-type bananas, which have a monospecific Musa acuminata origin (AAA), account for around half of the global banana production, thereby are of great significance for human societies. However, until now, the high-quality haplotype-resolved reference genome was still undecoded for banana cultivars. Here, we reported the telomere-to-telomere (T2T) and haplotype-resolved reference genome of 'Baxijiao' (Cavendish) consisting of three haploid assemblies. The sizes of the three haploid assemblies were estimated to be 477.16 Mb, 477.18 Mb, and 469.57 Mb, respectively. Although with monospecific origins, the three haploid assemblies showed great differences with low levels of sequence collinearity. Several large reciprocal translocations were identified among chromosomes 1, 4, and 7. An expansion of gene families that might affect fruit quality and aroma was detected, such as those belonging to sucrose/disaccharide/oligosaccharide catabolic processes, sucrose metabolic process, starch metabolic process, and aromatic compound biosynthetic process. Besides, an expansion of gene families related to anther and pollen development was observed, which could be associated with parthenocarpy and sterility of the Cavendish cultivar. Finally, much fewer resistance genes were identified in 'Baxijiao' than in M. acuminata, particularly in the gene clusters in chromosomes 3 and 10, providing potential targets to explore for molecular analysis of disease resistance in banana. This T2T haplotype-resolved reference genome will thus be a valuable genetic resource for biological studies, molecular breeding, and genetic improvement of banana.

5.
Sci Data ; 10(1): 631, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37716992

RESUMO

Musa acuminata is a main wild contributor to banana cultivars. Here, we reported a haplotype-resolved and telomere-to-telomere reference genome of M. acuminata by incorporating PacBio HiFi reads, Nanopore ultra-long reads, and Hi-C data. The genome size of the two haploid assemblies was estimated to be 469.83 Mb and 470.21 Mb, respectively. Multiple assessments confirmed the contiguity (contig N50: 16.53 Mb and 18.58 Mb; LAI: 20.18 and 19.48), completeness (BUSCOs: 98.57% and 98.57%), and correctness (QV: 45.97 and 46.12) of the genome. The repetitive sequences accounted for about half of the genome size. In total, 40,889 and 38,269 protein-coding genes were annotated in the two haploid assemblies, respectively, of which 9.56% and 3.37% were newly predicted. Genome comparison identified a large reciprocal translocation involving 3 Mb and 10 Mb from chromosomes 01 and 04 within M. acuminata. This reference genome of M. acuminata provides a valuable resource for further understanding of subgenome evolution of Musa species, and precise genetic improvement of banana.


Assuntos
Genoma de Planta , Musa , Haploidia , Musa/genética , Telômero/genética
6.
New Phytol ; 194(3): 676-689, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22409515

RESUMO

• Flowering is a major developmental transition and its timing in relation to environmental conditions is of crucial importance to plant fitness. Understanding the genetic basis of flowering time variation is important to determining how plants adapt locally. • Here, we investigated flowering time variation of Capsella bursa-pastoris collected from different latitudes in China. We also used a digital gene expression (DGE) system to generate partial gene expression profiles for 12 selected samples. • We found that flowering time was highly variable and most strongly correlated with day length and winter temperature. Significant differences in gene expression between early- and late-flowering samples were detected for 72 candidate genes for flowering time. Genes related to circadian rhythms were significantly overrepresented among the differentially expressed genes. • Our data suggest that circadian rhythms and circadian clock genes play an important role in the evolution of flowering time, and C. bursa-pastoris plants exhibit expression differences for candidate genes likely to affect flowering time across the broad range of environments they face in China.


Assuntos
Capsella/fisiologia , Ritmo Circadiano/genética , Flores/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Variação Genética/genética , Transcriptoma/genética , Adaptação Fisiológica/genética , Evolução Biológica , Capsella/genética , China , Análise por Conglomerados , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Geografia , Mutação , Fenótipo , Fotoperíodo , Estações do Ano , Temperatura , Fatores de Tempo
7.
Plants (Basel) ; 9(11)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167549

RESUMO

Pogostemon Desf., the largest genus of the tribe Pogostemoneae (Lamiaceae), consists of ca. 80 species distributed mainly from South and Southeast Asia to China. The genus contains many patchouli plants, which are of great economic importance but taxonomically difficult. Therefore, it is necessary to characterize more chloroplast (cp) genomes for infrageneric phylogeny analyses and species identification of Pogostemon, especially for patchouli plants. In this study, we newly generated four cp genomes for three patchouli plants (i.e., Pogostemon plectranthoides Desf., P. septentrionalis C. Y. Wu et Y. C. Huang, and two cultivars of P. cablin (Blanoco) Benth.). Comparison of all samples (including online available cp genomes of P. yatabeanus (Makino) Press and P. stellatus (Lour.) Kuntze) suggested that Pogostemon cp genomes are highly conserved in terms of genome size and gene content, with a typical quadripartite circle structure. Interspecific divergence of cp genomes has been maintained at a relatively low level, though seven divergence hotspot regions were identified by stepwise window analysis. The nucleotide diversity (Pi) value was correlated significantly with gap proportion (indels), but significantly negative with GC content. Our phylogenetic analyses based on 80 protein-coding genes yielded high-resolution backbone topologies for the Lamiaceae and Pogostemon. For the overall mean substitution rates, the synonymous (dS) and nonsynonymous (dN) substitution rate values of protein-coding genes varied approximately threefold, while the dN values among different functional gene groups showed a wider variation range. Overall, the cp genomes of Pogostemon will be useful for phylogenetic reconstruction, species delimitation and identification in the future.

8.
Am J Bot ; 97(11): e114-6, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21616811

RESUMO

PREMISE OF THE STUDY: Microsatellite markers were developed to help elucidate the population genetics of the invasive species Wedelia trilobata. • METHODS AND RESULTS: Using the Fast Isolation by AFLP of Sequences COntaining (FIASCO) repeats protocol, 23 sets of primers for amplifying microsatellite loci were identified in W. trilobata, 10 of which showed polymorphism (two to five alleles per locus) in samples of two populations of W. trilobata, one from China and one from Peru. Six of these loci were successfully amplified from samples of the native congener W. chinensis, with expected sizes. • CONCLUSIONS: These markers may be useful for further investigation of population genetics of Wedelia trilobata and other congener species.

9.
Genetics ; 183(1): 337-45, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19581451

RESUMO

The long-term fates of duplicate genes are well studied both empirically and theoretically, but how the short-term evolution of duplicate genes contributes to phenotypic variation is less well known. Here, we have studied the genetic basis of flowering time variation in the disomic tetraploid Capsella bursa-pastoris. We sequenced four duplicate candidate genes for flowering time and 10 background loci in samples from western Eurasia and China. Using a mixed-model approach that accounts for population structure, we found that polymorphisms at one homeolog of two candidate genes, FLOWERING LOCUS C (FLC) and CRYPTOCHROME1 (CRY1), were associated with natural flowering time variation. No potentially causative polymorphisms were found in the coding region of CRY1; however, at FLC two splice site polymorphisms were associated with early flowering. Accessions harboring nonconsensus splice sites expressed an alternatively spliced transcript or did not express this FLC homeolog. Our results are consistent with the function of FLC as a major repressor of flowering in Arabidopsis thaliana and imply that nonfunctionalization of duplicate genes could provide an important source of phenotypic variation.


Assuntos
Processamento Alternativo/genética , Capsella/genética , Flores/crescimento & desenvolvimento , Flores/genética , Homologia de Sequência , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Capsella/crescimento & desenvolvimento , Criptocromos/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética/fisiologia , Geografia , Proteínas de Domínio MADS/genética , Dados de Sequência Molecular , Poliploidia , Fatores de Tempo
10.
Mol Ecol Resour ; 8(5): 1049-51, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21585968

RESUMO

Sedum alfredii is a Zn/Cd hyperaccumulator distributed in East Asia. A total of eight polymorphic microsatellite markers were developed. These loci were screened in 25 individuals from one heavy metal-tolerant population and one nontolerant population, respectively. The average allele number of these markers was 5.25 per locus, ranging from two to nine. Population-specific alleles were found at each locus. The observed and expected heterozygosities ranged from 0.000 to 0.640 and from 0.451 to 0.819. Significant deviation from Hardy-Weinberg equilibrium was detected at both the species and the population level. No significant linkage disequilibrium was detected at population level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA