Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Phys Rev Lett ; 132(3): 038302, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307047

RESUMO

We characterize the full spatiotemporal gait of populations of swimming Escherichia coli using renewal processes to analyze the measurements of intermediate scattering functions. This allows us to demonstrate quantitatively how the persistence length of an engineered strain can be controlled by a chemical inducer and to report a controlled transition from perpetual tumbling to smooth swimming. For wild-type E. coli, we measure simultaneously the microscopic motility parameters and the large-scale effective diffusivity, hence quantitatively bridging for the first time small-scale directed swimming and macroscopic diffusion.


Assuntos
Quimiotaxia , Escherichia coli , Natação , Difusão , Marcha
2.
J Nanobiotechnology ; 22(1): 15, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38166929

RESUMO

Embryonic stem cell (ESC)-derived epitopes can act as therapeutic tumor vaccines against different types of tumors Jin (Adv Healthc Mater 2023). However, these epitopes have poor immunogenicity and stimulate insufficient CD8+ T cell responses, which motivated us to develop a new method to deliver and enhance their effectiveness. Bacterial outer membrane vesicles (OMVs) can serve as immunoadjuvants and act as a delivery vector for tumor antigens. In the current study, we engineered a new OMV platform for the co-delivery of ESC-derived tumor antigens and immune checkpoint inhibitors (PD-L1 antibody). An engineered Staphylococcal Protein A (SpA) was created to non-specifically bind to anti-PD-L1 antibody. SpyCatcher (SpC) and SpA were fused into the cell outer membrane protein OmpA to capture SpyTag-attached peptides and PD-L1 antibody, respectively. The modified OMV was able to efficiently conjugate with ESC-derived TAAs and PD-L1 antibody (SpC-OMVs + SpT-peptides + anti-PD-L1), increasing the residence time of TAAs in the body. The results showed that the combination therapy of ESC-based TAAs and PD-L1 antibody delivered by OMV had significant inhibitory effects in mouse tumor model. Specifically, it was effective in reducing tumor growth by enhancing IFN-γ-CD8+ T cell responses and increasing the number of CD8+ memory cells and antigen-specific T cells. Overall, the new OMV delivery system is a versatile platform that can enhance the immune responses of ESC-based TAA cancer vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Animais , Camundongos , Antígeno B7-H1/metabolismo , Neoplasias/terapia , Anticorpos , Antígenos de Neoplasias , Proteínas de Membrana , Imunidade , Peptídeos , Epitopos
3.
Sensors (Basel) ; 24(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203170

RESUMO

Respiratory viruses' detection is vitally important in coping with pandemics such as COVID-19. Conventional methods typically require laboratory-based, high-cost equipment. An emerging alternative method is Near-Infrared (NIR) spectroscopy, especially a portable one of the type that has the benefits of low cost, portability, rapidity, ease of use, and mass deployability in both clinical and field settings. One obstacle to its effective application lies in its common limitations, which include relatively low specificity and general quality. Characteristically, the spectra curves show an interweaving feature for the virus-present and virus-absent samples. This then provokes the idea of using machine learning methods to overcome the difficulty. While a subsequent obstacle coincides with the fact that a direct deployment of the machine learning approaches leads to inadequate accuracy of the modelling results. This paper presents a data-driven study on the detection of two common respiratory viruses, the respiratory syncytial virus (RSV) and the Sendai virus (SEV), using a portable NIR spectrometer supported by a machine learning solution enhanced by an algorithm of variable selection via the Variable Importance in Projection (VIP) scores and its Quantile value, along with variable truncation processing, to overcome the obstacles to a certain extent. We conducted extensive experiments with the aid of the specifically developed algorithm of variable selection, using a total of four datasets, achieving classification accuracy of: (1) 0.88, 0.94, and 0.93 for RSV, SEV, and RSV + SEV, respectively, averaged over multiple runs, for the neural network modelling of taking in turn 3 sessions of data for training and the remaining one session of an 'unknown' dataset for testing. (2) the average accuracy of 0.94 (RSV), 0.97 (SEV), and 0.97 (RSV + SEV) for model validation and 0.90 (RSV), 0.93 (SEV), and 0.91 (RSV + SEV) for model testing, using two of the datasets for model training, one for model validation and the other for model testing. These results demonstrate the feasibility of using portable NIR spectroscopy coupled with machine learning to detect respiratory viruses with good accuracy, and the approach could be a viable solution for population screening.


Assuntos
COVID-19 , Vírus , Humanos , Algoritmos , COVID-19/diagnóstico , Capacidades de Enfrentamento , Aprendizado de Máquina
4.
Phys Rev E ; 109(1-1): 014612, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366485

RESUMO

We introduce a numerical method to extract the parameters of run-and-tumble dynamics from experimental measurements of the intermediate scattering function. We show that proceeding in Laplace space is unpractical and employ instead renewal processes to work directly in real time. We first validate our approach against data produced using agent-based simulations. This allows us to identify the length and time scales required for an accurate measurement of the motility parameters, including tumbling frequency and swim speed. We compare different models for the run-and-tumble dynamics by accounting for speed variability at the single-cell and population level, respectively. Finally, we apply our approach to experimental data on wild-type Escherichia coli obtained using differential dynamic microscopy.


Assuntos
Bactérias , Microscopia , Microscopia/métodos , Natação , Escherichia coli , Modelos Biológicos
5.
EBioMedicine ; 99: 104916, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101297

RESUMO

BACKGROUND: Earlier Omicron subvariants including BA.1, BA.2, and BA.5 emerged in waves, with a subvariant replacing the previous one every few months. More recently, the post-BA.2/5 subvariants have acquired convergent substitutions in spike that facilitated their escape from humoral immunity and gained ACE2 binding capacity. However, the intrinsic pathogenicity and replication fitness of the evaluated post-BA.2/5 subvariants are not fully understood. METHODS: We systemically investigated the replication fitness and intrinsic pathogenicity of representative post-BA.2/5 subvariants (BL.1, BQ.1, BQ.1.1, XBB.1, CH.1.1, and XBB.1.5) in weanling (3-4 weeks), adult (8-10 weeks), and aged (10-12 months) mice. In addition, to better model Omicron replication in the human nasal epithelium, we further investigated the replication capacity of the post-BA.2/5 subvariants in human primary nasal epithelial cells. FINDINGS: We found that the evaluated post-BA.2/5 subvariants are consistently attenuated in mouse lungs but not in nasal turbinates when compared with their ancestral subvariants BA.2/5. Further investigations in primary human nasal epithelial cells revealed a gained replication fitness of XBB.1 and XBB.1.5 when compared to BA.2 and BA.5.2. INTERPRETATION: Our study revealed that the post-BA.2/5 subvariants are attenuated in lungs while increased in replication fitness in the nasal epithelium, indicating rapid adaptation of the circulating Omicron subvariants in the human populations. FUNDING: The full list of funding can be found at the Acknowledgements section.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Animais , Camundongos , Virulência , Células Epiteliais , Mucosa Nasal
6.
Biomedicines ; 12(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275365

RESUMO

Natively unfolded tau has a low propensity to form aggregates, but in tauopathies, such as Alzheimer's disease (AD), tau aggregates into paired helical filaments (PHFs) and neurofibrillary tangles (NFTs). Multiple intracellular transport pathways utilize kinesin-1, a plus-end-directed microtubule-based motor. Kinesin-1 is crucial in various neurodegenerative diseases as it transports multiple cargoes along the microtubules (MT). Kinesin-1 proteins cannot progress along MTs due to an accumulation of tau on their surfaces. Although kinesin-1-mediated neuronal transport dysfunction is well-documented in other neurodegenerative diseases, its role in AD has received less attention. Very recently, we have shown that knocking down and knocking out of kinesin-1 heavy chain (KIF5B KO) expression significantly reduced the level and stability of tau in cells and tau transgenic mice, respectively. Here, we report that tau interacts with the motor domain of KIF5B in vivo and in vitro, possibly through its microtubule-binding repeat domain. This interaction leads to the inhibition of the ATPase activity of the motor domain. In addition, the KIF5B KO results in autophagy initiation, which subsequently assists in tau degradation. The mechanisms behind KIF5B KO-mediated tau degradation seem to involve its interaction with tau, promoting the trafficking of tau through retrograde transport into autophagosomes for subsequent lysosomal degradation of tau. Our results suggest how KIF5B removal facilitates the movement of autophagosomes toward lysosomes for efficient tau degradation. This mechanism can be enabled through the downregulation of kinesin-1 or the disruption of the association between kinesin-1 and tau, particularly in cases when neurons perceive disturbances in intercellular axonal transport.

7.
Biosci. j. (Online) ; 38: e38084, Jan.-Dec. 2022. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1397167

RESUMO

We optimized the expression and purification of outer membrane proteins SpaO and LamB from Salmonella typhi. We investigated various factors in the expression and purification processes, including the use of isopropyl ß-d-1 thiogalactopyranoside (IPTG), imidazole, and urea. First, PCR amplification was carried out on SpaO and LamB genes. The genes were then cloned in pTZ57R/T, and then expressed in pET28a vector and transformed into Escherichia coli BL21 (DE3). Gene insertion was confirmed by enzymatic digestion with NdeI and XhoI. Inclusion bodies expressing recombinant SpaO and LamB were induced with 200 and 400 µL 0.5 mM IPTG, respectively. The formed protein inclusion bodies were then isolated from the pellet and solubilized in IB buffer containing 8 M urea for SpaO and 6 M urea for LamB. Proteins were refolded by dialysis in 3M urea. Purified proteins with nickel-nitrilotriacetic acid affinity chromatography and eluted with buffer containing 250 mM imidazole for SpaO and 150 mM imidazole for LamB. The protein expression profiles were analyzed by SDS-PAGE, which identified the 33 and 49 kDa bands corresponding to rSpaO and rLamB. Western blotting Purification was carried out by nickel affinity resin with 250 mM and 150 mM imidazole for rSpaO and rLamB and refolded through stepwise dialysis with anti-His tag antibodies confirmed their expression. These optimized methods can be used to generate recombinant proteins for the development of future vaccines.


Assuntos
Salmonella typhi , Proteínas de Membrana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA