Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Revista
Assunto da revista
Intervalo de ano de publicação
1.
Small ; 20(1): e2302440, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37668280

RESUMO

The perception of temperature and pressure of skin plays a vital role in joint movement, hand grasp, emotional expression, and self-protection of human. Among many biomimetic materials, ionic gels are uniquely suited to simulate the function of skin due to its ionic transport mechanism. However, both the temperature and pressure sensing are heavily dependent on the changes in ionic conductivity, making it impossible to decouple the temperature and pressure signals. Here, a pressure-insensitive and temperature-modulated ion channel is designed by synergistic strategies for gel skeleton's compact packing and ultra-thin structure, mimicking the function of the temperature ion channel in human skin. This ion-confined gel can completely suppress the pressure response of the temperature sensing layer. Furthermore, a temperature-pressure decoupled ionic sensor is fabricated and it is demonstrated that the ionic sensor can sense complex signals of temperature and pressure. This novel and effective approach has great potential to overcome one of the current barriers in developing ionic skin and extending its applications.


Assuntos
Biomimética , Percepção do Tato , Humanos , Temperatura , Tato/fisiologia , Canais Iônicos
2.
Small ; 19(34): e2301544, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37156739

RESUMO

Strain sensors have been attracting tremendous attention for the promising application of wearable devices in recent years. However, the trade-off between high resolution, high sensitivity, and broad detection range is a great challenge for the application of strain sensors. Herein, a novel design of hierarchical synergistic structure (HSS) of Au micro cracks and carbon black (CB) nanoparticles is reported to overcome this challenge. The strain sensor based on the designed HSS exhibit high sensitivity (GF > 2400), high strain resolution (0.2%) even under large loading strain, broad detection range (>40%), outstanding stability (>12000 cycles), and fast response speed simultaneously. Further, the experiments and simulation results demonstrate that the carbon black layer greatly changed the morphology of Au micro-cracks, forming a hierarchical structure of micro-scale Au cracks and nano-scale carbon black particles, thus enabling synergistic effect and the double conductive network of Au micro-cracks and CB nanoparticles. Based on the excellent performance, the sensor is successfully applied to monitoring tiny signals of the carotid pulse during body movement, which illustrates the great potential in the application of health monitoring, human-machine interface, human motion detection, and electronic skin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA