Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Angew Chem Int Ed Engl ; 62(9): e202215891, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36596721

RESUMO

Trifluoromethyl-bearing 5-membered rings are prevalent in bioactive molecules, but modular approaches to these compounds by functionalization of robust C(sp3 )-H bonds in a direct and selective manner are extremely challenging. Herein we report the rhodium-catalyzed α-CF3 -α-alkyl carbene insertion into C(sp3 )-H bonds of a broad range of substrates to access 7 types of CF3 -bearing saturated 5-membered carbo- and heterocycles. The reaction is particularly effective for benzylic C-H insertion exerting good site-, diastereo- and enantiocontrol, and applicable to the synthesis of chiral CF3 analogues of bioactive molecules. Ruthenium α-CF3 -α-alkyl carbene complexes underwent stoichiometric reactions to give C-H insertion products, lending evidence for the involvement of metal α-CF3 -α-alkyl carbene species in the catalytic cycle. DFT calculations revealed that the π⋅⋅⋅π attraction and intra-carbene C-H⋅⋅⋅F hydrogen bond elucidate the origin of selectivity of the benzylic C-H insertion reactions.

2.
Angew Chem Int Ed Engl ; 61(21): e202200748, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35183066

RESUMO

Metal-free and metal-containing molecular trefoil knots are fascinating ensembles that are usually covalently assembled, the latter requiring the rational design of di- or multidentate/multipodal ligands as connectors. In this work, we describe the self-assembly of pentadecanuclear AuI trefoil knots [Au15 (C≡CR)15 ] from monoalkynes HC≡CR (R=9,9-X2 -fluorenyl with X=nBu, n-hexyl) and [AuI (THT)Cl]. Hetero-bimetallic counterparts [Au9 M6 (C≡CR)15 ] (M=Cu/Ag) were self-assembled by reactions of [Au15 (C≡CR)15 ] with [Cu(MeCN)4 ]+ /AgNO3 and HC≡CR. The type of pentadecanuclear trefoil knots described herein is characterized by X-ray crystallography, 2D NMR and HR-ESI-MS. [Au9 Cu6 (C≡CR)15 ] is relatively stable in hexane; its excited state properties were investigated. DFT calculations revealed that non-covalent metal-metal and metal-ligand interactions, together with longer alkyl chain-strengthened inter-ligand dispersion interactions, govern the stability of the trefoil knot structures.

3.
Angew Chem Int Ed Engl ; 60(34): 18619-18629, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-33847064

RESUMO

Metal-catalyzed C-N bond formation reactions via acylnitrene transfer have recently attracted much attention, but direct detection of the proposed acylnitrenoid/acylimido M(NCOR) (R=aryl or alkyl) species in these reactions poses a formidable challenge. Herein, we report on Ru(NCOR) intermediates in C-N bond formation catalyzed by [RuIV (Por)Cl2 ]/N3 COR, a catalytic method applicable to aziridine/oxazoline formation from alkenes, amination of substituted indoles, α-amino ketone formation from silyl enol ethers, amination of C(sp3 )-H bonds, and functionalization of natural products and carbohydrate derivatives (up to 99 % yield). Experimental studies, including HR-ESI-MS and EPR measurements, coupled with DFT calculations, lend evidence for the formulation of the Ru(NCOR) acylnitrenoids as a RuV -imido species.

4.
Angew Chem Int Ed Engl ; 59(38): 16561-16571, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32500643

RESUMO

Reliable methods for enantioselective cis-dihydroxylation of trisubstituted alkenes are scarce. The iron(II) complex cis-α-[FeII (2-Me2 -BQPN)(OTf)2 ], which bears a tetradentate N4 ligand (Me2 -BQPN=(R,R)-N,N'-dimethyl-N,N'-bis(2-methylquinolin-8-yl)-1,2-diphenylethane-1,2-diamine), was prepared and characterized. With this complex as the catalyst, a broad range of trisubstituted electron-deficient alkenes were efficiently oxidized to chiral cis-diols in yields of up to 98 % and up to 99.9 % ee when using hydrogen peroxide (H2 O2 ) as oxidant under mild conditions. Experimental studies (including 18 O-labeling, ESI-MS, NMR, EPR, and UV/Vis analyses) and DFT calculations were performed to gain mechanistic insight, which suggested possible involvement of a chiral cis-FeV (O)2 reaction intermediate as an active oxidant. This cis-[FeII (chiral N4 ligand)]2+ /H2 O2 method could be a viable green alternative/complement to the existing OsO4 -based methods for asymmetric alkene dihydroxylation reactions.

5.
J Am Chem Soc ; 141(22): 9027-9046, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31064182

RESUMO

Reactivity study of novel metal carbene complexes can offer new opportunities in catalytic carbene transfer reactions as well as in other synthetic protocols. Metal complexes with quinoid carbene (QC) ligands are assumed to be key intermediates in a variety of metal-catalyzed QC transfer reactions using diazo quinones, which demands development of the chemistry of QC transfer of well characterized metal-QC complexes. Herein we report the isolation and QC transfer of ruthenium porphyrins [Ru(Por)(QC)] which contribute the first examples of (i) structurally characterized metal-QC complex (by X-ray crystallography) and (ii) isolated metal-QC complex that undergoes QC transfer reaction. The complexes [Ru(Por)(QC)] were prepared from reaction of [Ru(Por)(CO)] with diazo quinones and exhibited dual reactivity, i.e., hydrogen atom transfer (HAT) as well as QC transfer. The stoichiometric QC transfer reactions from these Ru-QC complexes to nitrosoarenes (ArNO) afforded nitrones in up to 90% yield, and the corresponding catalytic reactions were also developed. Both the stoichiometric and catalytic reactions for a series of QC ligands bearing electron-donating and -withdrawing substituents showed a reverse substituent effect on the QC transfer reactivity. Complexes [Ru(Por)(QC)] are also reactive toward C-H and X-H (X = N, S) bonds and can catalyze aerobic oxidation of 1,4-cyclohexadiene; their stoichiometric HAT reactions with unsaturated hydrocarbons gave product yields of up to 88%. The unique dual reactivity and electronic feature of [Ru(Por)(QC)] were studied by spectroscopic means and density functional theory (DFT) calculations.

6.
Chemistry ; 25(46): 10828-10833, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31271674

RESUMO

Ruthenium(II) complexes bearing a tridentate bis(N-heterocyclic carbene) ligand reacted with iminoiodanes (PhI=NR) resulting in the formation of isolable ruthenium(III)-amido intermediates, which underwent cleavage of a C-N bond of the tridentate ligand and formation of an N-substituted imine group. The RuIII -amido intermediates have been characterized by 1 H NMR, UV/Vis, ESI-MS, and X-ray crystallography. DFT calculations were performed to provide insight into the reaction mechanism.

7.
Angew Chem Int Ed Engl ; 58(45): 16297-16306, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31486262

RESUMO

Supramolecular ensembles adopting ring-in-ring structures are less developed compared with catenanes featuring interlocked rings. While catenanes with inter-ring closed-shell metallophilic interactions, such as d10 -d10 AuI -AuI interactions, have been well-documented, the ring-in-ring complexes featuring such metallophilic interactions remain underdeveloped. Herein is described an unprecedented ring-in-ring structure of a AuI -thiolate Au12 cluster formed by recrystallization of a AuI -thiolate Au10 [2]catenane from alkane solvents such as hexane, with use of a bulky dibutylfluorene-2-thiolate ligand. The ring-in-ring AuI -thiolate Au12 cluster features inter-ring AuI -AuI interactions and underwent cluster core change to form the thermodynamically more stable Au10 [2]catenane structure upon dissolving in, or recrystallization from, other solvents such as CH2 Cl2 , CHCl3 , and CH2 Cl2 /MeCN. The cluster-to-cluster transformation process was monitored by 1 H NMR and ESI-MS measurements. Density functional theory (DFT) calculations were performed to provide insight into the mechanism of the "ring-in-ring⇌ [2]catenane" interconversions.

8.
Chemistry ; 24(54): 14400-14408, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30069954

RESUMO

Five-coordinated d6 metal complexes are relatively uncommon but can be useful building blocks for the construction of supramolecular assemblies. In this work we have used the strong trans effect of aryl and alkyl ligands for the synthesis of luminescent five-coordinated organoiridium porphyrins, which are useful building blocks for the construction of metallamacrocycles and metallacages of iridium through metal-ligand interactions at the axial positions of iridium porphyrins (Ir(por)). Diverse di- or tritopic aryl or alkyl linkers were employed as the axial ligands to coordinate Ir(por) at an axial position to afford di- or trinuclear five-coordinated [{Ir(ttp)}n (X)] (ttp=5,10,15,20-tetrakis(p-tolyl)porphyrinato(2-); n=2, X=diaryl; n=3, X=trialkyl). [{Ir(ttp)}n (X)] could be further coordinated with ditopic isocyanide or pyridine ligands at the other axial site of each Ir(ttp) to give unprecedented cyclic supramolecular metalloporphyrin assemblies, including tetra- and hexanuclear metallamacrocycles and hexanuclear metallacages. The Ir(por) metallamacrocycles and metallacages display phosphorescence in the near-infrared region with quantum yields of around 2 % and microsecond emission lifetimes.

9.
Inorg Chem ; 56(24): 15066-15080, 2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29190093

RESUMO

A series of cis-dioxorhenium(V) complexes containing chiral tetradentate N4 ligands, including cis-[ReV(O)2(pyxn)]+ (1; pyxn = N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)cyclohexane-1,2-diamine), cis-[ReV(O)2(6-Me2pyxn)]+ (cis-2), cis-[ReV(O)2(R,R-pdp)]+ (3; R,R-pdp = 1,1'-bis((R,R)-2-pyridinylmethyl)-2,2'-bipyrrolidine), cis-[ReV(O)2(R,R-6-Me2pdp)]+ (4), and cis-[ReV(O)2(bqcn)]+ (5; bqcn = N,N'-dimethyl-N,N'-di(quinolin-8-yl)cyclohexane-1,2-diamine), were synthesized. Their structures were established by X-ray crystallography, showing Re-O distances in the range of 1.740(3)-1.769(8) Å and O-Re-O angles of 121.4(2)-124.8(4)°. Their cyclic voltammograms in MeCN (0.1 M [NBu4]PF6) display a reversible ReVI/V couple at E1/2 = 0.39-0.49 V vs SCE. In aqueous media, three proton-coupled electron transfer reactions corresponding to ReVI/V, ReV/III, and ReIII/II couples were observed at pH 1. The Pourbaix diagrams of 1·OTf, 3·OTf, and 5·OTf have been examined. The electronic absorption spectra of the cis-dioxorhenium(V) complexes show three absorption bands at around 800 nm (600-1730 dm3 mol-1 cm-1), 580 nm (1700-5580 dm3 mol-1 cm-1), and 462-523 nm (3170-6000 dm3 mol-1 cm-1). Reaction of 1 with Lewis acids (or protic acids) gave cis-[ReV(O)(OH)(pyxn)]2+ (1·H+), in which the Re-O distances are lengthened to 1.788(5) Å. Complex cis-2 resulted from isomerization of trans-2 at elevated temperature. cis-[ReVI(O)2(pyxn)](PF6)2 (1'·(PF6)2) was obtained by constant-potential electrolysis of 1·PF6 in MeCN (0.1 M [NBu4]PF6) at 0.56 V vs SCE; it displays shorter Re-O distances (1.722(4), 1.726(4) Å) and a smaller O-Re-O angle (114.88(18)°) relative to 1 and shows a d-d transition absorption band at 591 nm (ε = 77 dm3 mol-1 cm-1). With a driving force of ca. 75 kcal mol-1, 1' oxidizes hydrocarbons with weak C-H bonds (75.5-76.3 kcal mol-1) via hydrogen atom abstraction. DFT and TDDFT calculations on the electronic structures and spectroscopic properties of the cis-dioxorhenium(V/VI) complexes were performed.

10.
Inorg Chem ; 56(8): 4253-4257, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28358495

RESUMO

Copper(I) complexes of tris(thioimidazolyl)borates (R'TmR), including [Cu(TmPh)(PR″3)] (R″ = Ph, Cu1; Cy, Cu2) and [Cu(R'TmPh)(PR″3)]+ (R' = N-methylimidazole; R″ = Ph, Cy) were prepared and characterized by spectroscopic methods. The X-ray crystal structures of Cu1 and Cu2 feature a tripodal TmPh ligand coordinated in κ3-S,S,S mode. Using Cu2 as a catalyst (loading: 1 mol %), the aziridination of styrenes and sulfimidation of thioanisoles with PhI═NTs at RT for 3 and 0.5 h, respectively, both resulted in product yields of up to 99%. Cu2 also catalyzed intramolecular amination of the aryl C-H bond of vinyl azides with up to 98% yield. DFT calculations were performed to gain insight into the mechanism of the Cu2-catalyzed aziridination reaction.

11.
Water Resour Res ; 53(1): 361-375, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28943669

RESUMO

The effect of low-concentrations of monorhamnolipid biosurfactant on transport of Pseudomonas aeruginosa ATCC 9027 in natural porous media (silica sand and a sandy soil) was studied with miscible-displacement experiments using artificial groundwater as the background solution. Transport of two types of cells was investigated, glucose- and hexadecane-grown cells with lower and higher cell surface hydrophobicity (CSH), respectively. The effect of hexadecane presence as a residual non-aqueous phase liquid (NAPLs) on transport was also examined. A clean-bed colloid deposition model was used to calculate deposition rate coefficients (k) for quantitative assessment. Significant cell retention was observed in the sand (81% and 82% for glucose- and hexadecane-grown cells, respectively). Addition of a low-concentration rhamnolipid solution enhanced cell transport, with 40 mg/L of rhamnolipid reducing retention to 50% and 60% for glucose- and hexadecane-grown cells, respectively. The k values for both glucose- and hexadecane-grown cells correlate linearly with rhamnolipid-dependent CSH represented as bacterial-adhesion-to-hydrocarbon rate of cells. Retention of cells by the soil was nearly complete (>99%). Addition of 40 mg/L rhamnolipid solution reduced retention to 95%. The presence of NAPLs in the sand increased the retention of hexadecane-grown cells with higher CSH. Transport of cells in the presence of the NAPL was enhanced by rhamnolipid at all concentrations tested, and the relative enhancement was greater than in was in the absence of NAPL. This study shows the importance of hydrophobic interaction on bacterial transport in natural porous media and the potential of using low-concentration rhamnolipid for facilitating the transport in subsurface for bioaugmentation efforts.

12.
Angew Chem Int Ed Engl ; 55(35): 10312-6, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27465124

RESUMO

Copper(I) alkynyl complexes have attracted tremendous attention in structural studies, as luminescent materials, and in catalysis, and homoleptic complexes have been reported to form polymers or large clusters. Herein, six unprecedented structures of Cu(I) alkynyl complexes and a procedure to measure the cone angles of alkynyl ligands based on the crystal structures of these complexes are reported. An increase of the alkynyl cone angle in the complexes leads to a modulation of the structures from polymeric [((PhC≡CC≡C)Cu)2 (NH3 )]∞ , to a large cluster [(TripC≡CC≡C)Cu]20 (MeCN)4 , to a relatively small cluster [(TripC≡C)Cu]8 (Trip=2,4,6-iPr3 -C6 H2 ). The complexes exhibit yellow-to-red phosphorescence at ambient temperature in the solid state and the luminescence behavior of the Cu20 cluster is sensitive to acetonitrile.

13.
Angew Chem Int Ed Engl ; 55(35): 10253-7, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27457506

RESUMO

The development of environmentally benign catalysts for highly enantioselective asymmetric cis-dihydroxylation (AD) of alkenes with broad substrate scope remains a challenge. By employing [Fe(II) (L)(OTf)2 ] (L=N,N'-dimethyl-N,N'-bis(2-methyl-8-quinolyl)-cyclohexane-1,2-diamine) as a catalyst, cis-diols in up to 99.8 % ee with 85 % isolated yield have been achieved in AD of alkenes with H2 O2 as an oxidant and alkenes in a limiting amount. This "[Fe(II) (L)(OTf)2 ]+H2 O2 " method is applicable to both (E)-alkenes and terminal alkenes (24 examples >80 % ee, up to 1 g scale). Mechanistic studies, including (18) O-labeling, UV/Vis, EPR, ESI-MS analyses, and DFT calculations lend evidence for the involvement of chiral Fe(III) -OOH active species in enantioselective formation of the two C-O bonds.

14.
Chemistry ; 20(46): 15122-30, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25267445

RESUMO

DFT calculations are performed on [Ru(II)(bpy)2(tmen)](2+) (M1, tmen = 2,3-dimethyl-2,3-butanediamine) and [Ru(II)(bpy)2(heda)](2+) (M2, head = 2,5-dimethyl-2,5-hexanediamine), and on the oxidation reactions of M1 to give the C-C bond cleavage product [Ru(II)(bpy)2(NH=CMe2)2](2+) (M3) and the N-O bond formation product [Ru(II)(bpy)2(ONCMe2CMe2NO)](2+) (M4). The calculated geometrical parameters and oxidation potentials are in good agreement with the experimental data. As revealed by the DFT calculations, [Ru(II)(bpy)2(tmen)](2+) (M1) can undergo oxidative deprotonation to generate Ru-bis(imide) [Ru(bpy)2(tmen-4 H)](+) (A) or Ru-imide/amide [Ru(bpy)2(tmen-3 H)](2+) (A') intermediates. Both A and A' are prone to C-C bond cleavage, with low reaction barriers (ΔG(≠)) of 6.8 and 2.9 kcal mol(-1) for their doublet spin states (2)A and (2)A', respectively. The calculated reaction barrier for the nucleophilic attack of water molecules on (2)A' is relatively high (14.2 kcal mol(-1)). These calculation results are in agreement with the formation of the Ru(II)-bis(imine) complex M3 from the electrochemical oxidation of M1 in aqueous solution. The oxidation of M1 with Ce(IV) in aqueous solution to afford the Ru(II)-dinitrosoalkane complex M4 is proposed to proceed by attack of the cerium oxidant on the ruthenium imide intermediate. The findings of ESI-MS experiments are consistent with the generation of a ruthenium imide intermediate in the course of the oxidation.


Assuntos
2,2'-Dipiridil/análogos & derivados , Diaminas/química , Imidas/química , Compostos Organometálicos/química , 2,2'-Dipiridil/química , Cério/química , Modelos Moleculares , Oxirredução , Teoria Quântica , Água/química
15.
Chemistry ; 20(35): 11035-47, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25066508

RESUMO

A series of ruthenium porphyrins [Ru(IV)(por)(NHY)2] and [Ru(VI)(por)(NY)2] bearing axially coordinated π-conjugated arylamide and arylimide ligands, respectively, have been synthesized. The crystal structures of [Ru(IV)(tmp)(NHY)2] (tmp = 5,10,15,20-tetramesitylporphyrinato(2-)) with Y = 4'-methoxy-biphenyl-4-yl (Ar-Ar-p-OMe), 4'-chloro-biphenyl-4-yl (Ar-Ar-p-Cl), and 9,9-dibutyl-fluoren-2-yl (Ar^Ar) show axial Ru-N(arylamide) distances of 1.978(4), 1.971(6), and 1.985(13) Å, respectively. [Ru(IV)(tmp)(NH{Ar^Ar})2] is an example of metalloporphyrins that bind an arylamide ligand featuring a co-planar biphenyl unit. The [Ru(IV)(por)(NHY)2] complexes show a quasi-reversible reduction couple or irreversible reduction wave attributed to Ru(IV)→Ru(III) with Epc from -1.06 to -1.40 V versus Cp2Fe(+/0) and an irreversible oxidation wave with Epa from -0.04 to 0.19 V versus Cp2Fe(+/0). Reaction of the [Ru(IV)(por)(NHY)2] with bromine afforded [Ru(IV)(por)(NHY)Br]. PhI(OAc)2 oxidation of the [Ru(IV)(por)(NHY)2] gave [Ru(VI)(por)(NY)2]; the latter can be prepared from reaction of [Ru(II)(por)(CO)] with aryl azides N3Y. The crystal structure of [Ru(VI)(tmp)(N{Ar-Ar-p-OMe})2] features Ru-N(arylimide) distances of 1.824(5) and 1.829(5) Å. Alkene aziridination and C-H amination catalyzed by "[Ru(II)(tmp)(CO)]+π-conjugated aryl azides", or mediated by [Ru(VI)(por)(NY)2] with Y = biphenyl-4-yl (Ar-Ar) and Ar-Ar-p-Cl, gave aziridines and amines in moderate yields. The electronic structure of [Ru(VI)(por)(NY)2] was examined by DFT calculations.

16.
Angew Chem Int Ed Engl ; 53(3): 798-803, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24285604

RESUMO

The oxidation of light alkanes that is catalyzed by heme and nonheme iron enzymes is widely proposed to involve highly reactive {Fe(V)=O} species or {Fe(IV)=O} ligand cation radicals. The identification of these high-valent iron species and the development of an iron-catalyzed oxidation of light alkanes under mild conditions are of vital importance. Herein, a combination of tridentate and bidentate ligands was used for the generation of highly reactive nonheme {Fe=O} species. A method that employs [Fe(III)(Me3tacn)(Cl-acac)Cl](+) as a catalyst in the presence of oxone was developed for the oxidation of hydrocarbons, including cyclohexane, propane, and ethane (Me3tacn=1,4,7-trimethyl-1,4,7-triazacyclononane; Cl-acac=3-chloro-acetylacetonate). The complex [Fe(III)(Tp)2](+) and oxone enabled stoichiometric oxidation of propane and ethane. ESI-MS, EPR and UV/Vis spectroscopy, (18)O labeling experiments, and DFT studies point to [Fe(IV)(Me3tacn)({Cl-acac}(.+))(O)](2+) as the catalytically active species.


Assuntos
Alcanos/química , Ferro/química , Ácidos Sulfúricos/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cicloexanos/química , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Oxirredução , Teoria Quântica
17.
J Biotechnol ; 383: 39-54, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38346451

RESUMO

Maize is an important food crop that is affected by salt stress during growth, which can hinder plant growth and result in a significant decrease in yield. The application of plant growth-promoting rhizobacteria can improve this situation to a certain extent. However, the gene network of rhizosphere-promoting bacteria regulating the response of maize to salt stress remains elusive. Here, we used metabolomics and transcriptomics techniques to elucidate potential gene networks and salt-response pathways in maize. Phenotypic analysis showed that the Bacillus atrophaeus treatment improved the plant height, leaf area, biomass, ion, nutrient and stomatal indicators of maize. Metabolomic analysis identified that differentially expressed metabolites (DEMs) were primarily concentrated in the arginine, proline and phytohormone signaling metabolic pathways. 4-Hydroxyphenylacetylglutamic acid, L-histidinol, oxoglutaric acid, L-glutamic acid, L-arginine, and L-tyrosine were significantly increased in the Bacillus atrophaeus treatment. Weighted gene coexpression network analysis (WGCNA) identified several hub genes associated with salt response: Zm00001eb155540 and Zm00001eb088790 (ABC transporter family), Zm00001eb419060 (extra-large GTP-binding protein family), Zm00001eb317200 (calcium-transporting ATPase), Zm00001eb384800 (aquaporin NIP1-4) and Zm00001eb339170 (cytochrome P450). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that genes related to plant hormone signal transduction and the MAPK signaling pathway were involved in the response to the effect of Bacillus atrophaeus under salt stress. In the plant hormone signal transduction pathway, 3 differentially expressed genes (DEGs) encoding EIN3/EILs protein, 3 DEGs encoding GH3, 1 DEG encoding PYR/PYL and 6 DEGs encoding PP2C were all upregulated in Bacillus atrophaeus treatment. In the MAPK signaling pathway, 2 DEGs encoding CAT1 and 2 DEGs encoding WRKY22/WRKY29 were significantly upregulated, and the expression of DEGs encoding RbohD was downregulated by the application of Bacillus atrophaeus. In conclusion, the application of Bacillus atrophaeus under salt stress regulated key physiological and molecular processes in plants, which could stimulate the expression of genes related to ion transport and nutrients in maize, alleviate salt stress and promote maize growth to some extent, deepening our understanding of the application of Bacillus atrophaeus under salt stress to improve the salt-response gene network of maize growth.


Assuntos
Bacillus , Transcriptoma , Zea mays , Zea mays/genética , Reguladores de Crescimento de Plantas/farmacologia , Metaboloma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
18.
Environ Sci Pollut Res Int ; 31(2): 2481-2494, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066280

RESUMO

The utilization of plant growth-promoting rhizobacteria (PGPR) has emerged as a prominent focus in contemporary research on soil microbiology, microecology, and plant stress tolerance. However, how PGPR influence the soil bacterial community and related ecological functions remains unclear. The aim of this study was to investigate the effects of three natural PGPR inoculations (YL07, Planococcus soli WZYH02; YL10, Bacillus atrophaeus WZYH01; YL0710, Planococcus soli WZYH02 and Bacillus atrophaeus WZYH01) on maize (Zea mays L.) growth under two salt stress conditions (S1, ECe = 2.1 ~ 2.5 dS/m; S2, ECe = 5.5 ~ 5.9 dS/m). The results revealed that compared to the control (CK), the average plant height of maize seedlings significantly increased by 27%, 23%, and 29% with YL07, YL10, and YL0710 inoculation under S1 conditions, respectively, and increased by 30%, 20%, and 18% under S2 conditions, respectively. Moreover, PGPR inoculation positively influenced the content of superoxide dismutase, catalase, soluble sugar, and proline in maize under salt stress. Subsequent analysis of alpha diversity indices, relative microbial abundance, principal coordinate analysis, cladograms, and linear discriminant analysis effect size histograms indicated significant alterations in the rhizosphere microbial community due to PGPR inoculation. FAPROTAX analysis demonstrated that YL10 inoculation in S2 rhizosphere soil had a notable impact on carbon cycle functions, specifically chemoheterotrophy, fermentation, and phototrophy. Thus, this study provides evidence that PGPR inoculation improves soil microbial communities and plant indices under salt stress. These findings shed light on the potential of PGPR as a viable approach for enhancing plant stress tolerance and fostering sustainable agricultural practices.


Assuntos
Bacillus , Microbiota , Solo/química , Zea mays , Microbiologia do Solo , Raízes de Plantas
19.
Environ Sci Pollut Res Int ; 31(29): 42277-42294, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38865046

RESUMO

Intercropping is a sustainable strategy recognized for boosting crop production and mitigating heavy metal toxicity in contaminated soils. This study investigates the effects of biochar amendments on Pb-contaminated soil, utilizing monocropping and intercropping techniques with C. olitorius and Z. mays. The research assesses Pb removal capacity, nutrient uptake, antioxidant enzymes, and soil Pb fractionation. In monocropping, the phytoremediation ratio for C. olitorius increased from 16.67 to 27.33%, while in intercropping, it rose from 19.00 to 28.33% with biochar amendments. Similarly, Z. mays exhibited an increased phytoremediation ratio from 53.33 to 74.67% in monocropping and from 63.00 to 78.67% in intercropping with biochar amendments. Intercropping significantly increased the peroxidase (POD) activity in Z. mays roots by 22.53%, and there were notable increases in shoot POD of C. olitorius (11.54%) and Z. mays (16.20%) with biochar application. CAT showed consistent improvements, increasing by 37.52% in C. olitorius roots and 74.49% in Z. mays roots with biochar. Biochar amendments significantly increased N content in soil under sole cropping of Z. mays and intercropping systems. In contrast, Cu content increased by 56.34%, 59.05%, and 79.80% in monocropping (C. olitorius and Z. mays) and intercropping systems, respectively. This suggests that biochar enhances nutrient availability, improving phytoremediation efficacy in Pb-contaminated soil. Phyto availability of trace metals (Zn, Mn, Cu, and Fe) exhibited higher levels with biochar amendments than those without. The findings indicate that intercropping and biochar amendments elevate antioxidant enzyme levels, reducing reactive oxygen species and mitigating Pb toxicity effects. This approach improves phytoremediation efficiency and holds promise for soil pollution remediation while enhancing nutrient content and crop quality in Pb-contaminated soil.


Assuntos
Biodegradação Ambiental , Carvão Vegetal , Corchorus , Chumbo , Poluentes do Solo , Solo , Zea mays , Carvão Vegetal/química , Solo/química , Metais Pesados
20.
J Am Chem Soc ; 135(19): 7194-204, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23634746

RESUMO

The 7-coordinate complex [Fe(qpy)(MeCN)2](ClO4)2 (1, qpy = 2,2':6',2″:6″,2''':6''',2''''-quinquepyridine) is a highly active nonheme iron catalyst for intra- and intermolecular amination of C(sp(3))-H bonds. This complex effectively catalyzes the amination of limiting amounts of not only benzylic and allylic C(sp(3))-H bonds of hydrocarbons but also the C(sp(3))-H bonds of cyclic alkanes and cycloalkane/linear alkane moieties in sulfamate esters, such as those derived from menthane and steroids cholane and androstane, using PhI═NR or "PhI(OAc)2 + H2NR" [R = Ts (p-toluenesulfonyl), Ns (p-nitrobenzenesulfonyl)] as nitrogen source, with the amination products isolated in up to 93% yield. Iron imide/nitrene intermediates [Fe(qpy)(NR)(X)](n+) (CX, X = NR, solvent, or anion) are proposed in these amination reactions on the basis of experimental studies including ESI-MS analysis, crossover experiments, Hammett plots, and correlation with C-H bond dissociation energies and with support by DFT calculations. Species consistent with the formulations of [Fe(qpy)(NTs)2](2+) (CNTs) and [Fe(qpy)(NTs)](2+) (C) were detected by high-resolution ESI-MS analysis of the reaction mixture of 1 with PhI═NTs (4 equiv). DFT calculations revealed that the reaction barriers for H-atom abstraction of cyclohexane by the ground state of 7-coordinate CNTs and ground state of C are 15.3 and 14.2 kcal/mol, respectively, in line with the observed high activity of 1 in catalyzing the C-H amination of alkanes under mild conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA