Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Cell Mol Med ; 26(9): 2673-2685, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35322916

RESUMO

TRIP13 is a member of the large superfamily of the AAA + ATPase proteins and is associated with a variety of activities. Emerging evidence has shown that TRIP13 may serve as an oncogene. However, the function of TRIP13 in breast cancer (BC) has not yet been elucidated. Here, a variety of bioinformatic tools and laboratory experiments were combined to analyse the expression patterns, prognostic value and functional network of TRIP13 in BC. Multiple databases and immunohistochemistry (IHC) indicated a higher TRIP13 expression in BC tissue compared with normal tissue. TRIP13 was highly expressed in lung metastatic lesions compared with primary tumours in a 4T1 cell implantation BALB/c mouse model of BC. Kaplan-Meier plots also revealed that high TRIP13 expression correlated with poor survival in patients with BC. Furthermore, gene set enrichment analysis revealed that TRIP13 was primarily enriched in the signalling pathway of PI3K-AKT-mTOR. Suppressing TRIP13 could inhibit the expression of related genes, as well as the proliferation and migration of BC cell. Finally, 10 hub genes with a high score of connectivity were filtered from the protein-protein interaction (PPI) network, including MAD2L1, CDC20, CDC5L, CDK1, CCNA2, BUB1B, RAD51, SPO11, KIF11 and AURKB. Thus, TRIP13 may be a promising prognostic biomarker and an effective therapeutic target for BC.


Assuntos
Neoplasias da Mama , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/genética
2.
Cancer Cell Int ; 19: 264, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632198

RESUMO

BACKGROUND: Centromere Protein F (CENPF) associates with the centromere-kinetochore complex and influences cell proliferation and metastasis in several cancers. The role of CENPF in breast cancer (BC) bone metastasis remains unclear. METHODS: Using the ONCOMINE database, we compared the expression of CENPF in breast cancer and normal tissues. Findings were confirmed in 60 BC patients through immunohistochemical (IHC) staining. Microarray data from GEO and Kaplan-Meier plots were used analyze the overall survival (OS) and relapse free survival (RFS). Using the GEO databases, we compared the expression of CENPF in primary lesions, lung metastasis lesions and bone metastasis lesions, and validated our findings in BALB/C mouse 4T1 BC models. Based on gene set enrichment analysis (GSEA) and western blot, we predicted the mechanisms by which CENPF regulates BC bone metastasis. RESULTS: The ONCOMINE database and immunohistochemical (IHC) showed higher CENPF expression in BC tissue compared to normal tissue. Kaplan-Meier plots also revealed that high CENPF mRNA expression correlated to poor survival and shorter progression-free survival (RFS). From BALB/C mice 4T1 BC models and the GEO database, CENPF was overexpressed in primary lesions, other target organs, and in bone metastasis. Based on gene set enrichment analysis (GSEA) and western blot, we predicted that CENPF regulates the secretion of parathyroid hormone-related peptide (PTHrP) through its ability to activate PI3K-AKT-mTORC1. CONCLUSION: CENPF promotes BC bone metastasis by activating PI3K-AKT-mTORC1 signaling and represents a novel therapeutic target for BC treatment.

3.
Cancer Manag Res ; 16: 629-638, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881789

RESUMO

Background: Guanine-rich RNA sequence binding factor 1 (GRSF1), part of the RNA-binding protein family, is now attracting interest due to its potential association with the progression of a variety of human cancers. The precise contribution and molecular mechanism of GRSF1 to colorectal cancer (CRC) progression, however, have yet to be clarified. Methods: Immunohistochemistry and Western Blot analysis was carried out to detect the expression of GRSF1 in CRC at both mRNA and protein levels and its subsequent effects on prognosis. A series of functional tests were performed to understand its influence on proliferation, migration, and invasion of CRC cells. Results: The universal downregulation of GRSF1 in CRC was identified, indicating a correlation with poor prognosis. Our functional studies unveiled that the elimination of GRSF1 enhances tumour activities such as proliferation, migration, and invasion of CRC cells, while GRSF1 overexpression curtailed these abilities. Conclusion: Notably, we uncovered that GRSF1 insufficiency modulates the PI3K/Akt signaling pathway and Ras activation in CRC. Therefore, our data suggest GRSF1 operates as a tumor suppressor gene in CRC and may offer promise as a potential biomarker and novel therapeutic target in CRC management.

4.
Biomed Res Int ; 2018: 6565393, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29581982

RESUMO

Bone metastasis (BM) is the advanced complication of breast cancer, while bone marrow-derived mesenchymal stem cells (BMSCs) in the microenvironment unclearly contribute to cancer metastasis. This study investigated potential roles of transforming growth factor- (TGF-) α in the interaction between breast cancer and BMSCs in BM. Clinical cases of breast cancer with bone metastasis (BMBC), breast cancer without bone metastasis (Non-BM-BC), and benign fibroadenoma (Benign) were enlisted in a retrospective study. TGF-α was found obviously overexpressed in BM lesion of BMBC compared to primary lesion of both BMBC and Non-BM-BC (P < 0.01), and TGF-α was higher in primary lesion of both BMBC and Non-BM-BC (P < 0.01) than Benign group. Interestingly, TGF-α in nontumor tissues of both BMBC and Non-BM-BC was at a higher level than Benign group (P < 0.01), and numbers of macrophages in nontumor tissues of both BMBC and Non-BM-BC (P < 0.01) were higher than Benign group. Furthermore, in cultured human BMSCs, TGF-α stimulated production of procancer cytokines including IL-6, VEGF, FGF10, FGF17, and TGF-ß1 in a dose-dependent manner. Thus, TGF-α in BC could potentially be an important signal of carcinogenesis and metastasis. Macrophages in the nontumor tissue of BC may not be protective but could promote cancer metastasis.


Assuntos
Células da Medula Óssea , Neoplasias Ósseas , Neoplasias da Mama , Citocinas/biossíntese , Células-Tronco Mesenquimais , Proteínas de Neoplasias/biossíntese , Fator de Crescimento Transformador alfa/biossíntese , Idoso , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade , Metástase Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA