Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ISA Trans ; 126: 638-648, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34456037

RESUMO

As one emerging reservoir modeling method, cycle reservoir with regular jumps (CRJ) provides one effective tool for many time series analysis tasks such as ship heave motion prediction. However, the shallow learning structure of single CRJ model limits its memory capacity and leads to unsatisfactory prediction performance. In order to pursue the stronger dynamic characteristic description of time series data, a delayed deep CRJ model is presented in this paper by integrating the deep learning framework with delay links and the evolutionary optimization for mixed-integer problem. Different from the basic CRJ model with only one reservoir, delayed deep CRJ builds multiple serial reservoirs with inserting the delay links between adjacent reservoirs. Due to the design of dynamic deep learning structure, the memory capacity is enlarged to improve ship heave motion prediction. Aiming at the mix-integer optimization problem in delayed deep CRJ model, a heuristic evolutionary optimization scheme based on the stepwise differential evolution algorithm is applied to determine the delayed deep CRJ parameters automatically. The stepwise differential evolution assisted delayed deep CRJ model can avoid the non-optimal solution resulted from the manual parameter setting effectively. Finally, one numerical example and the real experiment data are utilized to validate the methods and the results demonstrate that delayed deep CRJ model has better prediction performance in contrast to the basic CRJ method.

2.
Ground Water ; 50(2): 199-206, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21675967

RESUMO

The geologic architecture in aquifer systems affects the behavior of fluid flow and the dispersion of mass. The spatial distribution and connectivity of higher-permeability facies play an important role. Models that represent this geologic structure have reduced entropy in the spatial distribution of permeability relative to models without structure. The literature shows that the stochastic model with the greatest variance in the distribution of predictions (i.e., the most conservative model) will not simply be the model representing maximum disorder in the permeability field. This principle is further explored using the Shannon entropy as a single metric to quantify and compare model parametric spatial disorder to the temporal distribution of mass residence times in model predictions. The principle is most pronounced when geologic structure manifests as preferential-flow pathways through the system via connected high-permeability sediments. As per percolation theory, at certain volume fractions the full connectivity of the high-permeability sediments will not be represented unless the model is three-dimensional. At these volume fractions, two-dimensional models can profoundly underrepresent the entropy in the real, three-dimensional, aquifer system. Thus to be conservative, stochastic models must be three-dimensional and include geologic structure.


Assuntos
Entropia , Água Subterrânea , Modelos Teóricos , Movimentos da Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA