Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Immunol ; 193(10): 5249-63, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25339668

RESUMO

The Lyn tyrosine kinase governs the development and function of various immune cells, and its dysregulation has been linked to malignancy and autoimmunity. Using models of chemically induced colitis and enteric infection, we show that Lyn plays a critical role in regulating the intestinal microbiota and inflammatory responses as well as protection from enteric pathogens. Lyn(-/-) mice were highly susceptible to dextran sulfate sodium (DSS) colitis, characterized by significant wasting, rectal bleeding, colonic pathology, and enhanced barrier permeability. Increased DSS susceptibility in Lyn(-/-) mice required the presence of T but not B cells and correlated with dysbiosis and increased IFN-γ(+) and/or IL-17(+) colonic T cells. This dysbiosis was characterized by an expansion of segmented filamentous bacteria, associated with altered intestinal production of IL-22 and IgA, and was transmissible to wild-type mice, resulting in increased susceptibility to DSS. Lyn deficiency also resulted in an inability to control infection by the enteric pathogens Salmonella enterica serovar Typhimurium and Citrobacter rodentium. Lyn(-/-) mice exhibited profound cecal inflammation, bacterial dissemination, and morbidity following S. Typhimurium challenge and greater colonic inflammation throughout the course of C. rodentium infection. These results identify Lyn as a key regulator of the mucosal immune system, governing pathophysiology in multiple models of intestinal disease.


Assuntos
Colite/imunologia , Disbiose/imunologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Salmonella/imunologia , Quinases da Família src/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/microbiologia , Citrobacter rodentium/imunologia , Citrobacter rodentium/patogenicidade , Colite/induzido quimicamente , Colite/microbiologia , Colite/patologia , Sulfato de Dextrana , Suscetibilidade a Doenças , Disbiose/genética , Disbiose/microbiologia , Disbiose/patologia , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/patologia , Feminino , Expressão Gênica , Imunoglobulina A/genética , Imunoglobulina A/metabolismo , Interferon gama/genética , Interferon gama/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Interleucinas/genética , Interleucinas/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Knockout , Microbiota/imunologia , Infecções por Salmonella/genética , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Índice de Gravidade de Doença , Linfócitos T/imunologia , Linfócitos T/microbiologia , Quinases da Família src/deficiência , Quinases da Família src/genética , Interleucina 22
2.
Assist Technol ; 27(4): 226-35; quiz 236-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26691562

RESUMO

Propulsion effort of manual wheelchairs, a major determinant of user mobility, is a function of human biomechanics and mechanical design. Human studies that investigate both variables simultaneously have resulted in largely inconsistent outcomes, motivating the implementation of a robotic propulsion system that characterizes the inherent mechanical performance of wheelchairs. This study investigates the impacts of mass and mass distribution on manual wheelchair propulsion by configuring an ultra-lightweight chair to two weights (12-kg and 17.6-kg) and two load distributions (70% and 55% on drive wheels). The propulsion torques of these four configurations were measured for a straight maneuver and a fixed-wheel turn, on both tile and carpet. Results indicated that increasing mass to 17.6-kg had the largest effect on straight acceleration, requiring 7.4% and 5.8% more torque on tile and carpet, respectively. Reducing the drive wheel load to 55% had the largest effect on steady-state straight motion and on both turning acceleration and steady-state turning; for tile and carpet, propulsion torque increased by 13.5% and 11.8%, 16.5% and 4.1%, 73% and 5.1%, respectively. These results demonstrate the robot's high sensitivity, and support the clinical importance of evaluating effects of wheelchair mass and axle position on propulsion effort across maneuvers and surfaces.


Assuntos
Fenômenos Mecânicos , Cadeiras de Rodas , Aceleração , Desenho de Equipamento , Humanos , Modelos Teóricos , Robótica , Torque
3.
Assist Technol ; 34(1): 91-103, 2022 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31891276

RESUMO

The effort needed to maneuver a manual wheelchair is a function of the occupied wheelchair's inertia and energy loss. The primary source of energy loss is due to the resistance of the drive wheels and casters on the ground. Specifically, manual wheelchairs have two major sources of frictional energy loss: rolling resistance and scrub torque. The objective of this study was to develop and validate component-level test methods to evaluate the energy loss properties of drive wheels and casters on different surfaces and with different applied loads. Rolling resistance is measured using a weighted coast-down cart and scrub torque is calculated by measuring the force required to rotate a plate that is loaded onto the tire's surface. Each test method was iterated and then applied to a cohort of drive wheels and casters. Both test methods demonstrated acceptable repeatability and the ability to distinguish energy loss parameters between common wheelchair components. The results show that caster and drive wheel energy losses can vary significantly across surfaces and with increased load on the casters. However, the findings also illuminate complex relationships between rolling resistance and scrub torque performance that embody a tradeoff in performance as applied to mobility during everyday life.


Assuntos
Cadeiras de Rodas , Desenho de Equipamento , Fricção , Humanos , Fenômenos Mecânicos , Torque
4.
J Rehabil Assist Technol Eng ; 7: 2055668320907819, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292593

RESUMO

AIM: Maneuvering manual wheelchairs is defined by changes in momentum. The amount of effort required to maneuver a wheelchair is dependent on many factors, some of which reflect the design and configuration of the wheelchair. OBJECTIVE: The objective of this study was to measure the work required to propel a manual wheelchair configured with three weight distributions, three drive wheels and four casters. METHODS: A novel wheelchair-propelling robot was used as the test platform to measure work while traversing two surfaces using three different maneuvers which were defined to highlight different kinetic energies and energy loss mechanisms. RESULTS: Overall, propulsion cost decreased with an increase in load on the drive wheels. Pneumatic drive wheels exhibited lower propulsion costs compared to a solid tire. Two casters, a 4″ dia × 1.5″ and a 5″ dia × 1″, exhibited better overall performance compared to 5″ dia × 1.5″ solid and 6″ dia × 1″ pneumatic casters. DISCUSSION: The results indicate that drive wheel load and types of drive wheels and casters impact propulsion cost and their influences differ across maneuvers and surfaces. The approach is well suited to assess equivalency in components and configurations. Assessment of performance equivalency would empower clinicians and users with important knowledge when selecting components.

5.
PLoS One ; 15(6): e0234742, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555594

RESUMO

Minimizing the effort to propel a manual wheelchair is important to all users in order to optimize the efficiency of maneuvering throughout the day. Assessing the propulsion cost of wheelchairs as a mechanical system is a key aspect of understanding the influences of wheelchair design and configuration. The objective of this study was to model the relationships between inertial and energy-loss parameters to the mechanical propulsion cost across different wheelchair configurations during straight and curvilinear trajectories. Inertial parameters of an occupied wheelchair and energy loss parameters of drive wheels and casters were entered into regression models representing three different maneuvers. A wheelchair-propelling robot was used to measure propulsion cost. General linear models showed strong relationships (R2 > 0.84) between the system-level costs of propulsion and the selected predictor variables representing sources of energy loss and inertial influences. System energy loss parameters were significant predictors in all three maneuvers. Yaw inertia was also a significant predictor during zero-radius turns. The results indicate that simple energy loss measurements can predict system-level performance, and inertial influences are mostly overshadowed by the increased resistive losses caused by added mass, though weight distribution can mitigate some of this added cost.


Assuntos
Modelos Teóricos , Cadeiras de Rodas , Fenômenos Biomecânicos , Desenho de Equipamento , Humanos
6.
J Rehabil Assist Technol Eng ; 3: 2055668316649892, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-31186904

RESUMO

BACKGROUND: Instrumented wheelchair wheels can be used to study the kinematics and kinetics of manual wheelchair propulsion. The objective of this study was to evaluate the impact of instrumented wheels on the inertial and frictional parameters of a wheelchair system. METHODS: This study compared mechanical parameters of an ultralightweight rigid frame wheelchair configured with pairs of SMARTwheels and spoke pneumatic wheels and loaded with an ISO 75 kg wheelchair dummy. Rectilinear and turning inertia of the occupied wheelchair and the rotational inertia of drive wheels were measured. A coast-down test measured frictional energy loss during straight and turning trajectories. FINDINGS: The addition of instrumented wheels increased occupied system mass by about 6% and turning inertia by about 16%. Frictional energy loss increased by over 40% in a straight trajectory and over 30% during turning. INTERPRETATION: Addition of instrumented increased the inertia and frictional energy loss of the wheelchair system. These relative effects will impact the wheelchair operator and increase the instantaneous propulsion torque during wheelchair maneuvers. The impacts will be less under conditions involving little or no change in velocity. Researchers should be encouraged to report changes in mass and weight distribution induced by addition of instrumented wheelchair wheels.

7.
Assist Technol ; 28(3): 137-43, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26820253

RESUMO

The purpose of this study was to evaluate the inertial properties and forces required to initiate movement on two different surfaces in a sample of three commonly prescribed gait trainers. Tests were conducted in a laboratory setting to compare the Prime Engineering KidWalk, Rifton Pacer, and Snug Seat Mustang with and without a weighted anthropometric test dummy configured to the weight and proportions of a 4-year-old child. The Pacer was the lightest and the KidWalk the heaviest while footprints of the three gait trainers were similar. Weight was borne fairly evenly on the four casters of the Pacer and Mustang while 85% of the weight was borne on the large wheels of the mid-wheel drive KidWalk. These differences in frame style, wheel, and caster style and overall mass impact inertial properties and forces required to initiate movement. Test results suggest that initiation forces on tile were equivalent for the Pacer and KidWalk while the Mustang had the highest initiation force. Initiation forces on carpet were lowest for the KidWalk and highest for the Mustang. This initial study of inertia and movement initiation forces may provide added information for clinicians to consider when selecting a gait trainer for their clients.


Assuntos
Fenômenos Biomecânicos/fisiologia , Marcha/fisiologia , Reabilitação/instrumentação , Tecnologia Assistiva , Pré-Escolar , Pessoas com Deficiência/reabilitação , Desenho de Equipamento , Humanos , Modelos Biológicos , Doenças Neuromusculares/reabilitação
8.
IEEE Trans Neural Syst Rehabil Eng ; 23(6): 983-91, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25420269

RESUMO

A wheelchair-propelling robot has been developed to measure the efficiency of manual wheelchairs. The use of a robot has certain advantages compared to the use of human operators with respect to repeatability of measurements and the ability to compare many more wheelchair configurations than possible with human operators. Its design and implementation required significant engineering and validation of hardware and control systems. The robot can propel a wheelchair according to pre-programmed accelerations and velocities and measures the forces required to achieve these maneuvers. Wheel velocities were within 0.1 m/s of programmed values and coefficients of variation . Torque measurements were also repeatable with . By determining the propulsion torque required to propel the wheelchair through a series of canonical maneuvers, task-dependent input work for various wheelchairs and configurations can be compared. This metric would serve to quantify the combined inertial and frictional resistance of the mechanical system.


Assuntos
Desenho de Equipamento/métodos , Robótica/instrumentação , Cadeiras de Rodas , Algoritmos , Antropometria , Calibragem , Engenharia/métodos , Humanos , Fenômenos Mecânicos , Reprodutibilidade dos Testes , Torque
9.
J Rehabil Res Dev ; 52(7): 763-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26745011

RESUMO

The purpose of this study was to develop a simple approach to evaluate resistive frictional forces acting on manual wheelchairs (MWCs) during straight and turning maneuvers. Using a dummy-occupied MWC, decelerations were measured via axle-mounted encoders during a coast-down protocol that included straight trajectories and fixed-wheel turns. Eight coast-down trials were conducted to test repeatability and repeated on separate days to evaluate reliability. Without changing the inertia of the MWC system, three tire inflations were chosen to evaluate the sensitivity in discerning deceleration differences using effect sizes. The technique was also deployed to investigate the effect of different MWC masses and weight distributions on resistive forces. Results showed that the proposed coast-down technique had good repeatability and reliability in measuring decelerations and had good sensitivity in discerning differences in tire inflation, especially during turning. The results also indicated that increased loading on drive wheels reduced resistive losses in straight trajectories while increasing resistive losses during turning. During turning trajectories, the presence of tire scrub contributes significantly to the amount of resistive force. Overall, this new coast-down technique demonstrates satisfactory repeatability and sensitivity for detecting deceleration changes during straight and turning trajectories, indicating that it can be used to evaluate resistive loss of different MWC configurations and maneuvers.


Assuntos
Torque , Cadeiras de Rodas/normas , Desaceleração , Desenho de Equipamento , Fricção , Humanos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA