Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Sensors (Basel) ; 24(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38400352

RESUMO

Making panoramic images has gradually become an essential function inside personal intelligent devices because panoramic images can provide broader and richer content than typical images. However, the techniques to classify the types of panoramic images are still deficient. This paper presents novel approaches for classifying the photographic composition of panoramic images into five types using fuzzy rules. A test database with 168 panoramic images was collected from the Internet. After analyzing the panoramic image database, the proposed feature model defined a set of photographic compositions. Then, the panoramic image was identified by using the proposed feature vector. An algorithm based on fuzzy rules is also proposed to match the identification results with that of human experts. The experimental results show that the proposed methods have demonstrated performance with high accuracy and this can be used for related applications in the future.

2.
Small ; 19(42): e2302621, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37340585

RESUMO

The clinical patency of small-diameter vascular grafts (SDVGs) (ID < 6 mm) is limited, with the formation of mural thrombi being a major threat of this limitation. Herein, a bilayered hydrogel tube based on the essential structure of native blood vessels is developed by optimizing the relation between vascular functions and the molecular structure of hydrogels. The inner layer of the SDVGs comprises a zwitterionic fluorinated hydrogel, avoiding the formation of thromboinflammation-induced mural thrombi. Furthermore, the position and morphology of the SDVGs can be visualized via 19 F/1 H magnetic resonance imaging. The outer poly(N-acryloyl glycinamide) hydrogel layer of SDVGs provides matched mechanical properties with native blood vessels through the multiple and controllable intermolecular hydrogen-bond interactions, which can withstand the accelerated fatigue test under pulsatile radial pressure for 380 million cycles (equal to a service life of 10 years in vivo). Consequently, the SDVGs exhibit higher patency (100%) and more stable morphology following porcine carotid artery transplantation for 9 months and rabbit carotid artery transplantation for 3 months. Therefore, such a bioinspired, antithrombotic, and visualizable SDVG presents a promising design approach for long-term patency products and great potential of helping patients with cardiovascular diseases.


Assuntos
Hidrogéis , Trombose , Humanos , Animais , Suínos , Coelhos , Inflamação , Prótese Vascular , Imageamento por Ressonância Magnética
3.
Sensors (Basel) ; 22(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808367

RESUMO

The rapid development of internet and social media has driven the great requirement for information sharing and intelligent property protection. Therefore, reversible information embedding theory has marked some approaches for information security. Assuming reversibility, the original and embedded data must be completely restored. In this paper, a high-capacity and multilayer reversible information hiding technique for digital images was presented. First, the integer Haar wavelet transform scheme converted the cover image from the spatial into the frequency domain that was used. Furthermore, we applied dynamic threshold analysis, the parameters of the predicted model, the location map, and the multilayer embedding method to improve the quality of the stego image and restore the cover image. In comparison with current algorithms, the proposed algorithm often had better embedding capacity versus image quality performance.

4.
Soft Matter ; 16(24): 5750-5758, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32529197

RESUMO

We synthesized amino-modified poly(ε-caprolactone) PCN-b-PEG-b-PCN (PECN) triblock copolymers and studied the contribution of the introduced amino groups to the drug delivery efficiency of PECN nanoparticles (NPs) and their injectable thermosensitive hydrogels. PECN15 with an optimal amino group content was obtained. Firstly, the hydrophobic drug paclitaxel (PTX) was loaded into PECN15 up to 5.91% and formed PTX/PECN NPs 90 nm in size and with a slightly positive charge (7.3 mV). Furthermore, the injectable PTX/PECN NPs aqueous solution (25 wt%) at ambient temperature could undergo fast gelation at 37 °C and sustainedly release PTX/PECN NPs in 10 days. More importantly, compared with our previously reported PECT NPs, the PECN NPs without an increase in toxicity could improve the cell uptake and enhance intracellular drug release by responding to the acidic environment of the endosome. Thus, the PTX/PECN NPs presented a lower IC50 of 3.14 µg mL-1 than that of the PTX/PECT NPs (7.67 µg mL-1) and free PTX (4.65 µg mL-1). Moreover, through peritumoral injection, the PTX/PECNGel showed 94.27% inhibition rate of tumor growth on day 19, higher than PTX/PECTGel (72.28%) and Taxol® (47.03%). Therefore, the PECN NPs hydrogel provided a more effective injectable platform to enhance local cancer chemotherapy, and also provided the possibility of further functionalization by the reactive amino groups.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Hidrogéis/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Paclitaxel/administração & dosagem , Poliésteres/administração & dosagem , Polietilenoglicóis/administração & dosagem , Animais , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Feminino , Hidrogéis/química , Injeções , Camundongos Endogâmicos BALB C , Micelas , Nanopartículas/química , Paclitaxel/química , Poliésteres/química , Polietilenoglicóis/química , Temperatura
5.
Soft Matter ; 16(8): 2141-2148, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32016231

RESUMO

Poly(l-lactic acid) (PLLA) scaffolds have been used in regenerative medicine, however, they commonly suffer from low flexibility, restricting their application in the repair and reconstruction of soft tissues. In this study, poly(l-lactide-co-ε-caprolactone) (PLCL) copolymers were examined to modulate the elasticity of PLLA with the random presence of CL units in PLLA. Thermodynamic analysis revealed that the introduction of PCL could significantly decrease the melting point and glass transition temperature of PLLA, benefiting the extrusion and printing of PLCL. Diverse scaffolds with designed architectures including porous cubes with or without large holes, cambered plates with holes and round tubes could be easily constructed by 3D printing. In the process of elastic deformation, the maximum elastic stress of the copolymer scaffold was obviously increased from 19.6 to 31.5 MPa when the relative content of PCL was increased to 70%, while the elongation at break was evidently increased from 388% to about 1974%. The Young's modulus of PLCL was also significantly decreased (P < 0.05) in comparison with that of PLLA. PLCL scaffolds have good platelet and endotheliocyte adhesion ability and no obvious hemolysis was observed. In vivo subcutaneous implantation of PLCL scaffolds demonstrated superior biocompatibility. Collectively, this work highlights that copolymerization of PCL segments into PLLA is an effective approach to tune the 3D printability and the stiffness and elasticity of PLLA scaffolds. PLCL scaffolds hold great promise for the regeneration of soft tissues including but not limited to cartilage, myocardium, muscle, tendon and nervous tissues.


Assuntos
Poliésteres/química , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Plaquetas/citologia , Adesão Celular , Proliferação de Células , Elasticidade , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Impressão Tridimensional , Coelhos , Engenharia Tecidual/instrumentação
6.
Nano Lett ; 18(7): 4377-4385, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29932335

RESUMO

Dendritic cells (DCs) are increasingly used in cancer vaccines due to their ability to regulate T-cell immunity. Major limitations associated with the present DC adoptive transfer immunotherapy are low cell viability and transient duration of transplanted DCs at the vaccination site and the lack of recruitment of host DCs, leading to unsatisfactory T-cell immune response. Here, we developed a novel vaccine nodule comprising a simple physical mixture of the peptide nanofibrous hydrogel, anti-PD-1 antibodies, DCs, and tumor antigens. Upon subcutaneous injection, the vaccine nodule maintained the viability and biological function including the antigen uptake and maturation of encapsulated DCs and simultaneously recruited a number of host DCs and promoted the drainage of activated DCs to lymph nodes, resulting in enhanced proliferation of antigen-specific splenocytes and provoking potent cellular immune responses. Compared with adoptive transfer of DCs and subcutaneous administration of antigen vaccine, such a vaccine nodule shows superior antitumor immunotherapy efficiency in both prophylactic and therapeutic tumor models including delayed tumor growth and prolonged mice survival due to effective stimulation of antitumor T-cell immunity and increased infiltration of activated CD8+ effector T-cells in the tumor. Our findings provide a simple and robust vaccination strategy for DC-based vaccines and also a unique vaccine product for stimulating and enhancing T-cell immunity, holding great promise for immunotherapy against cancer and infectious diseases.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Neoplasias/terapia , Linfócitos T/imunologia , Vacinas Anticâncer/uso terapêutico , Engenharia Celular , Células Dendríticas/citologia , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/uso terapêutico , Neoplasias/imunologia , Peptídeos/imunologia , Peptídeos/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia
7.
Mol Pharm ; 14(5): 1760-1770, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28296410

RESUMO

In this study, the photochemical internalization (PCI) technique was adopted in a nanoparticle-based antigen delivery system to enhance antigen-specific CD8+ T cell immune response for cancer immunotherapy. Pheophorbide A, a hydrophobic photosensitizer, grafted with polyethylenimine (PheoA-PEI) with endosome escape activity and near-infrared imaging capability was prepared. A model antigen ovalbumin (OVA) was then complexed with PheoA-PEI to form PheoA-PEI/OVA nanoparticles (PheoA-PEI/OVA NPs) that are responsive to light. Flow cytometry analysis revealed increased endocytosis in a murine dendritic cell line (DC2.4) that was treated with PheoA-PEI/OVA NPs compared to free OVA. Generation of reactive oxygen species (ROS) in DC2.4 cells was also confirmed quantitatively and qualitatively using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Confocal laser scanning microscopy (CLSM) further demonstrated that the PheoA-PEI/OVA NPs enhanced cytosolic antigen release after light stimulation. Moreover, PheoA-PEI/OVA NP treated DC2.4 cells exhibited enhanced cross-presentation to B3Z T cell hybridoma in vitro after light irradiation, substantially increased compared to those treated with free OVA. Consistently, in vivo results revealed upregulation of CD3+CD8+T lymphocytes in tumors of mice treated with dendritic cells plus PheoA-PEI/OVA NPs and light irradiation. The activated T cell response is partly responsible for the inhibitory effect on E.G7 tumor growth in mice immunized with dendritic cells plus PheoA-PEI/OVA NPs and light irradiation. Our results demonstrate the feasibility to enhance antigen-specific CD8+ T cell immune response by light-responsive nanoparticle-based vaccine delivery for cancer immunotherapy.


Assuntos
Clorofila/análogos & derivados , Células Dendríticas/metabolismo , Imunoterapia/métodos , Nanopartículas/química , Polietilenoimina/química , Animais , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Clorofila/química , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Espécies Reativas de Oxigênio/metabolismo , Oxigênio Singlete/metabolismo
8.
Biomacromolecules ; 15(8): 3128-38, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25054812

RESUMO

Reasonably structural design of nanoparticles (NPs) to combine functions of prolonged systemic circulation, enhanced tumor targeting and specific intracellular drug release is crucial for antitumor drug delivery. Combining advantages of Arg-Gly-Asp (RGD) for active tumor targeting, zwitterionic polycarboxybetaine methacrylate (PCB) for prolonged systemic circulation, poly(2-(diisopropylamino) ethyl methacrylate) (PDPA) for acid-triggered intracellular release, novel RGD-PCB-b-PDPA (RGD-PCD) block copolymers were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization and followed by functionalization with RGD. Doxorubicine (DOX) was encapsulated within the RGD-PCD NPs as model medicine (RGD-PCD/DOX NPs). With ultra pH-sensitivity of PDPA, the drug release was restrained at pH 7.4 for only 24% within 36 h, which was increased to 60% at pH 6.0 within 24 h, and released more rapidly at pH 5.0 for 100% within 5 h, indicating that the RGD-PCD/DOX NPs were able to turn drug release "off" at neutral pH (e.g., systemic circulation) whereas "on" under acidic conditions (e.g., inside endo/lysosomes). Furthermore, the results of fluorescence microscopy and flow cytometry analysis demonstrated improved internalization of RGD-PCD/DOX NPs in HepG2 cells via integrin-mediated endocytosis with rapid DOX release intracellularly. Consequently, the RGD-PCD/DOX NPs showed considerable cytotoxicity against HepG2 and HeLa cells in comparison with free DOX. Importantly, the RGD-PCD/DOX NPs exhibited little protein adsorption property with excellent serum stability, which led to prolonged systemic circulation and enhanced tumor accumulation in tumor-bearing nude mice. Therefore, this multifunctional RGD-PCD NPs, which represented the flexible design approach, showed great potential for the development of novel nanocarriers in tumor-targeted drug delivery.


Assuntos
Portadores de Fármacos/química , Liberação Controlada de Fármacos , Integrinas/química , Nanopartículas/química , Polímeros/química , Animais , Betaína/química , Doxorrubicina/farmacologia , Endocitose/efeitos dos fármacos , Células HeLa , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Camundongos Nus , Oligopeptídeos/química , Ácidos Polimetacrílicos/química
9.
Biomater Res ; 28: 0046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894889

RESUMO

The occurrence of rheumatoid arthritis (RA) is highly correlated with progressive and irreversible damage of articular cartilage and continuous inflammatory response. Here, inspired by the unique structure of synovial lipid-hyaluronic acid (HA) complex, we developed supramolecular HA-nanomedicine hydrogels for RA treatment by mediating macrophage-synovial fibroblast cross-talk through locally sustained release of celastrol (CEL). Molecular dynamics simulation confirmed that HA conjugated with hydrophobic segments could interspersed into the CEL-loaded [poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone)-poly(ethylene glycol)-poly(ε-caprolaone-co-1,4,8-trioxa[4.6]spiro-9-undecanone] (PECT) nanoparticles to form the supramolecular nanomedicine hydrogel HA-poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-un-decanone)/PECT@CEL (HP@CEL), enabling fast hydrogel formation after injection and providing a 3-dimensional environment similar with synovial region. More importantly, the controlled release of CEL from HP@CEL inhibited the macrophage polarization toward the proinflammatory M1 phenotype and further suppressed the proliferation of synovial fibroblasts by regulating the Toll-like receptor pathway. In collagen-induced arthritis model in mice, HP@CEL hydrogel treatment substantial attenuated clinical symptoms and bone erosion and improved the extracellular matrix deposition and bone regeneration in ankle joint. Altogether, such a bioinspired injectable polymer-nanomedicine hydrogel represents an effective and promising strategy for suppressing RA progression through augmenting the cross-talk of macrophages and synovial fibroblast for regulation of chronic inflammation.

10.
Regen Biomater ; 11: rbad118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404617

RESUMO

Due to its highly insidious and rapid progression, deep tissue pressure injury (DTPI) is a clinical challenge. Our previous study found that DTPI may be a skeletal muscle injury dominated by macrophage immune dysfunction due to excessive iron accumulation. Decellularized extracellular matrix (dECM) hydrogel promotes skeletal muscle injury repair. However, its role in polarizing macrophages and regulating iron metabolism in DTPI remains unclear. Here, porcine dECM hydrogel was prepared, and its therapeutic function and mechanism in repairing DTPI were investigated. The stimulus of dECM hydrogel toward RAW264.7 cells resulted in a significantly higher percentage of CD206+ macrophages and notably decreased intracellular divalent iron levels. In mice DTPI model, dECM hydrogel treatment promoted M1 to M2 macrophage conversion, improved iron metabolism and reduced oxidative stress in the early stage of DTPI. In the remodeling phase, the dECM hydrogel remarkably enhanced revascularization and accelerated skeletal muscle repair. Furthermore, the immunomodulation of dECM hydrogels in vivo was mainly involved in the P13k/Akt signaling pathway, as revealed by GO and KEGG pathway analysis, which may ameliorate the iron deposition and promote the healing of DTPI. Our findings indicate that dECM hydrogel is promising in skeletal muscle repair, inflammation resolution and tissue injury healing by effectively restoring macrophage immune homeostasis and normalizing iron metabolism.

11.
Biomater Sci ; 12(11): 2930-2942, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38646699

RESUMO

Current mesh materials used for the clinical treatment of abdominal defects struggle to balance mechanical properties and bioactivity to support tissue remodeling. Therefore, a bioactive microgel-coated electrospinning membrane was designed with the superiority of cell-instructive topology in guiding cell behavior and function for abdominal wall defect reconstruction. The electrostatic spinning technique was employed to prepare a bioabsorbable PLCL fiber membrane with an effective mechanical support. Additionally, decellularized matrix (dECM)-derived bioactive microgels were further coated on the fiber membrane through co-precipitation with dopamine, which was expected to endow cell-instructive hydrophilic interfaces and topological morphologies for cell adhesion. Moreover, the introduction of the dECM into the microgel promoted the myogenic proliferation and differentiation of C2C12 cells. Subsequently, in vivo experiments using a rat abdominal wall defect model demonstrated that the bioactive microgel coating significantly contributed to the reconstruction of intact abdominal wall structures, highlighting its potential for clinical application in promoting the repair of soft tissue defects associated with abdominal wall damage. This study presented an effective mesh material for facilitating the reconstruction of abdominal wall defects and contributed novel design concepts for the surface modification of scaffolds with cell-instructive interfaces and topology.


Assuntos
Parede Abdominal , Animais , Parede Abdominal/cirurgia , Camundongos , Ratos , Microgéis/química , Linhagem Celular , Ratos Sprague-Dawley , Adesão Celular/efeitos dos fármacos , Membranas Artificiais , Alicerces Teciduais/química , Proliferação de Células/efeitos dos fármacos , Poliésteres/química , Diferenciação Celular/efeitos dos fármacos , Masculino , Engenharia Tecidual
12.
Adv Sci (Weinh) ; 11(2): e2305967, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984880

RESUMO

Transcatheter intervention has been the preferred treatment for congenital structural heart diseases by implanting occluders into the heart defect site through minimally invasive access. Biodegradable polymers provide a promising alternative for cardiovascular implants by conferring therapeutic function and eliminating long-term complications, but inducing in situ cardiac tissue regeneration remains a substantial clinical challenge. PGAG (polydioxanone/poly (l-lactic acid)-gelatin-A5G81) occluders are prepared by covalently conjugating biomolecules composed of gelatin and layer adhesive protein-derived peptides (A5G81) to the surface of polydioxanone and poly (l-lactic acid) fibers. The polymer microfiber-biomacromolecule-peptide frame with biophysical and biochemical cues could orchestrate the biomaterial-host cell interactions, by recruiting endogenous endothelial cells, promoting their adhesion and proliferation, and polarizing immune cells into anti-inflammatory phenotypes and augmenting the release of reparative cytokines. In a porcine atrial septal defect (ASD) model, PGAG occluders promote in situ tissue regeneration by accelerating surface endothelialization and regulating immune response, which mitigate inflammation and fibrosis formation, and facilitate the fusion of occluder with surrounding heart tissue. Collectively, this work highlights the modulation of cell-biomaterial interactions for tissue regeneration in cardiac defect models, ensuring endothelialization and extracellular matrix remodeling on polymeric scaffolds. Bioinspired cell-material interface offers a highly efficient and generalized approach for constructing bioactive coatings on medical devices.


Assuntos
Gelatina , Dispositivo para Oclusão Septal , Animais , Suínos , Gelatina/química , Polidioxanona , Células Endoteliais , Polímeros , Materiais Biocompatíveis , Ácido Láctico , Peptídeos
13.
J Mater Chem B ; 11(8): 1798-1807, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36727624

RESUMO

Combined chemotherapy plays an increasingly important and practical role in the clinical treatment of malignant tumor. In this study, paclitaxel (PTX) and curcumin (Cur) are simultaneously encapsulated into nanogels (termed as NG-PC) in situ by microemulsion photopolymerization at 532 nm for synergistically suppressing breast tumors. NG-PC with a size of 180 nm and a low polydispersity index (PDI < 0.2) presents a controlled and cumulative release of PTX and Cur within 90 h. Moreover, NG-PC displays a remarkable killing effect against 4T1 and MCF-7 cells. In vivo antitumor evaluation on 4T1 tumor-bearing mice demonstrates that NG-PC has significantly higher ability to inhibit tumor growth, inducing necrosis, apoptosis and suppression of proliferation than that of a single drug. Our research provides a facile method to prepare a nano-drug delivery platform with excellent drug co-loading ability and synergistic antitumor effect.


Assuntos
Neoplasias da Mama , Curcumina , Humanos , Camundongos , Animais , Feminino , Paclitaxel/farmacologia , Curcumina/farmacologia , Nanogéis , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico
14.
Acta Biomater ; 158: 535-546, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632876

RESUMO

Vaccination shows great promise in cancer immunotherapy. However, the induction of robust and broad therapeutic CD8 T cell immunity against tumors is challenging due to the essential heterogenicity of tumor antigen expression. Recently, bioinspired materials have reshaped the field of cancer nanomedicine. Herein, a bioinspired nanofibrous trivalent peptide hydrogel vaccine was constructed using the spontaneous supramolecular co-assembly of three antigenic epitope-conjugated peptides, which could mimic the fibrillar structure and biological function of the extracellular matrix and naturally occurring protein assembly. The hydrogel vaccine could be accurately and flexibly adjusted to load each antigenic peptide at a defined ratio, which facilitated the antigen presentation of dendritic cells and significantly improved the initiation of CD8 T cell response and the secretion of interferon-γ (IFN-γ). C57BL/6 mice were immunized with the trivalent peptide hydrogel vaccine, where it elicited a high broad-spectrum antitumor CD8 T cell response that significantly inhibited the growth of B16 tumors in the absence of additional immunoadjuvants or delivery systems. In summary, the supramolecular assembly of triple antigenic epitope-conjugated peptides offers a simple, customizable, and versatile approach for the development of cancer vaccines with remarkable therapeutic efficacy, thereby providing a highly versatile platform for the application of personalized multivalent tumor vaccines. STATEMENT OF SIGNIFICANCE: (1) We report a feasible, versatile and bioinspired approach to manufacture a multivalent peptide-based hydrogel cancer vaccine in the absence of additional adjuvants, which closely mimics immune niches, co-delivers antigen epitopes, greatly promotes antigen presentation to DCs and their subsequent homing to dLNs and elicits a broad-spectrum antitumor CD8 T cell response, resulting in significant inhibition of B16 tumor growth. (2) This feasible and efficient co-assembly strategy provides an attractive platform for engineering a range of multivalent vaccines at defined ratios to further enhance antigen-specific T cell responses. This approach may also be used for personalized immunotherapy with neo-epitopes.


Assuntos
Vacinas Anticâncer , Imunoterapia , Neoplasias , Vacinas de Subunidades Antigênicas , Animais , Camundongos , Adjuvantes Imunológicos , Antígenos de Neoplasias , Vacinas Anticâncer/química , Vacinas Anticâncer/uso terapêutico , Linfócitos T CD8-Positivos , Células Dendríticas , Epitopos , Hidrogéis/química , Hidrogéis/uso terapêutico , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Peptídeos/uso terapêutico , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/uso terapêutico
15.
Adv Healthc Mater ; 12(16): e2201894, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36349743

RESUMO

The imaging of hydrogel scaffolds by 19 F magnetic resonance imaging (MRI) represents an attractive tool for straightforward and noninvasive monitoring of their morphology and in vivo fate. However, their further applications are significantly limited by a dilemma of insufficient signal resolution with low 19 F content, and/or hydrophobic aggregation of fluorine moieties-induced signal attenuation with high 19 F content. Herein, a novel label-free fluorinated hydrogel (PFCB) is fabricated with high fluorine content to realize noninvasive monitoring through 19 F MRI under ultrahigh scanning resolution (1 mm of scanning thickness). The integration of a zwitterionic unit into each fluorine moiety completely overcame the hydrophobic aggregation-induced signal attenuation, manifesting as high 19 F content and imaging performance. Importantly, 3D reconstruction of the PFCB hydrogel in vivo can be facilely and accurately performed with background free signals, providing detailed biological information of the implanted hydrogel. Additionally, PFCB hydrogel showed adjustable and high mechanical performance, and exhibited minimum foreign body reaction after implantation. As a proof of concept, PFCB hydrogel could be further applied as gel electrodes and wireless flexible sensors for healthcare monitoring. Overall, such label-free fluorinated PFCB hydrogel is an ideal flexible scaffold for eventual clinical applications integrating 19 F MRI-guided unequivocally 3D reconstruction and healthcare monitoring.


Assuntos
Imagem por Ressonância Magnética de Flúor-19 , Flúor , Flúor/química , Hidrogéis/química , Imageamento por Ressonância Magnética , Interações Hidrofóbicas e Hidrofílicas , Imagem por Ressonância Magnética de Flúor-19/métodos
16.
ACS Appl Mater Interfaces ; 15(10): 12750-12765, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36852940

RESUMO

The application of photodynamic therapy (PDT) has attracted remarkable interest in cancer treatment because of the advantages of noninvasiveness and spatiotemporal selectivity. However, the PDT efficiency is considerably limited by photosensitizer (PS) quenching and severe hypoxia in solid tumors. Herein, a kind of near infrared (NIR)-activatable methylene blue (MB) peptide nanocarrier was developed for codelivery of nitric oxide (NO) prodrug JSK, expecting a cascade of reactive oxygen species (ROS) amplification-mediated antitumor PDT. In detail, MB was conjugated to water-soluble polyethylene glycol-polylysine (PEG-PLL) through NIR-photocleavable 10-N-carbamoyl bonds, and the subsequent amphiphilic conjugates (mPEG-PLL-MB) self-assembled into nanoparticles (NPs), which allowed JSK codelivery via π-π stacking interactions. MB in quenched state in mPEG-PLL-MB/JSK NPs could be photoactivated by NIR light locoregionally in a controlled manner due to the photocleavage of carbamoyl bonds. Apart from ROS production, assembly disturbance and even disintegration of mPEG-PLL-MB/JSK occurred along with MB activation that subsequently freed JSK, which was further triggered by intracellularly overexpressed glutathione (GSH) and glutathione S-transferase (GST) to sustain the release of NO. NO then served as a hypoxia relief agent through inhibition of cellular respiration to economize O2, cooperating with MB activation and GSH depletion, which synergistically enabled a cascade of ROS amplification to augment PDT for mitochondrial apoptosis-mediated tumor inhibition in vitro and in vivo. Therefore, this pioneering strategy of cascade amplification of ROS addressed the key issues of PS inactivation, hypoxia resistance, and ROS neutralization in a three-pronged approach, which hold great promise in efficient antitumor PDT.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Pró-Fármacos , Humanos , Espécies Reativas de Oxigênio , Azul de Metileno/farmacologia , Azul de Metileno/química , Óxido Nítrico , Pró-Fármacos/farmacologia , Fármacos Fotossensibilizantes/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Peptídeos/farmacologia , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral
17.
Adv Sci (Weinh) ; 10(11): e2206585, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36776018

RESUMO

Bacterial infection often induces chronic repair of wound healing owing to aggravated inflammation. Hydrogel dressing exhibiting intrinsic antibacterial activity may substantially reduce the use of antibiotics for infected wound management. Hence, a versatile hydrogel dressing (rGB/QCS/PDA-PAM) exhibiting skin adaptiveness on dynamic wounds and  mild photothermal antibacterial activity is developed for safe and efficient infected wound treatment. Phenylboronic acid-functionalized graphene (rGB) and oxadiazole-decorated quaternary carboxymethyl chitosan (QCS) are incorporated into a polydopamine-polyacrylamide (PDA-PAM) network with multiple covalent and noncovalent bonds, which conferred the hydrogel with flexible mechanical properties, strong tissue adhesion and excellent self-healing ability on the dynamic wounds. Moreover, the glycocalyx-mimicking phenylboronic acid on the surface of rGB enables the hydrogel to specifically capture bacteria. The enhanced membrane permeability of QCS enhanced bacterial vulnerability to photothermal therapy(PTT), which is demonstrated by efficient mild PTT antibacteria against methicillin-resistant Staphylococcus aureus in vitro and in vivo at temperatures of <49.6 °C. Consequently, the hydrogel demonstrate accelerated tissue regeneration on MRSA-infected wound in vivo, with an intact epidermis, abundant collagen deposition and prominent angiogenesis. Therefore, rGB/QCS/PDA-PAM is a versatile hydrogel dressing exhibiting inherent antibacterial activity and has considerable potential in treating wounds infected with drug-resistant bacteria.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Hidrogéis , Antibacterianos/farmacologia , Bandagens , Cicatrização
18.
Bioact Mater ; 29: 251-264, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37533477

RESUMO

Excessive reactive oxygen species (ROS) at severe burn injury sites may promote metabolic reprogramming of macrophages to induce a deteriorative and uncontrolled inflammation cycle, leading to delayed wound healing and regeneration. Here, a novel bioactive, anti-fouling, flexible polyzwitterionic hydrogel encapsulated with epigallocatechin gallate (EGCG)-copper (Cu) capsules (termed as EGCG-Cu@CBgel) is engineered for burn wound management, which is dedicated to synergistically exerting ROS-scavenging, immune metabolic regulation and pro-angiogenic effects. EGCG-Cu@CBgel can scavenge ROS to normalize intracellular redox homeostasis, effectively relieving oxidative damages and blocking proinflammatory signal transduction. Importantly, EGCG-Cu can inhibit the activity of hexokinase and phosphofructokinase, alleviate accumulation of pyruvate and convert it to acetyl coenzyme A (CoA), whereby inhibits glycolysis and normalizes tricarboxylic acid (TCA) cycle. Additionally, metabolic reprogramming of macrophages by EGCG-Cu downregulates M1-type polarization and the expression of proinflammatory cytokines both in vitro and in vivo. Meanwhile, copper ions (Cu2+) released from the hydrogel facilitate angiogenesis. EGCG-Cu@CBgel significantly accelerates the healing of severe burn wound via promoting wound closure, weakening tissue-damaging inflammatory responses and enhancing the remodeling of pathological structure. Overall, this study demonstrates the great potential of bioactive hydrogel dressing in treating burn wounds without unnecessary secondary damage to newly formed skin, and highlights the importance of immunometabolism modulation in tissue repair and regeneration.

19.
Adv Healthc Mater ; 12(1): e2201671, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183357

RESUMO

Clinical wound management of radiation-induced skin injury (RSI) remains a great challenge due to acute injuries induced by excessive reactive oxygen species (ROS), and the concomitant repetitive inflammatory microenvironment caused by an imbalance in macrophage homeostasis. Herein, a cutaneous extracellular matrix (ECM)-inspired glycopeptide hydrogel (GK@TAgel ) is rationally designed for accelerating wound healing through modulating the chronic inflammation in RSI. The glycopeptide hydrogel not only replicates ECM-like glycoprotein components and nanofibrous architecture, but also displays effective ROS scavenging and radioprotective capability that can reduce the acute injuries after exposure to irradiation. Importantly, the mannose receptor (MR) in GK@TAgel exhibits high affinity and bioactivity to drive the M2 macrophage polarization, thereby overcoming the persistent inflammatory microenvironment in chronic RSI. The repair of RSI in mice demonstrates that GK@TAgel significantly reduces the hyperplasia of epithelial, promotes appendage regeneration and angiogenesis, and decreased the proinflammatory cytokine expression, which is superior to the treatment of commercial radioprotective drug amifostine. Collectively, the ECM-mimetic hydrogel dressing can protect the tissue from irradiation and heal the chronic wound in RSI, holding great potential in clinical wound management and tissue regeneration.


Assuntos
Hidrogéis , Cicatrização , Animais , Camundongos , Hidrogéis/farmacologia , Espécies Reativas de Oxigênio , Pele , Inflamação/tratamento farmacológico
20.
Acta Biomater ; 166: 155-166, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37230435

RESUMO

The elevation of oxidative stress and inflammatory response after injury remains a substantial challenge that can deteriorate the wound microenvironment and compromise the success of wound healing. Herein, the assembly of naturally derived epigallocatechin-3-gallate (EGCG) and Cerium microscale complex (EGCG@Ce) was prepared as reactive oxygen species (ROS) scavenger, which was further loaded in antibacterial hydrogels as wound dressing. EGCG@Ce shows superior antioxidation capacity towards various ROS including free radical, O2- and H2O2 through superoxide dismutase-like or catalase-mimicking catalytic activity. Importantly, EGCG@Ce could provide mitochondrial protective effect against oxidative stress damages, reverse the polarization of M1 macrophages and reduce the secretion of pro-inflammatory cytokines. Furtherly, EGCG@Ce was loaded into the PEG-chitosan hydrogel with dynamic, porous, injectable and antibacterial properties as wound dressing, which accelerated the regeneration of both epidermal layer and dermis, resulting in improved healing process of full-thickness skin wounds in vivo. Mechanistically, EGCG@Ce re-shaped the detrimental tissue microenvironment and augmented the pro-reparative response through reducing ROS accumulation, alleviating inflammatory response, enhancing the M2 macrophage polarization and angiogenesis. Collectively, antioxidative and immunomodulatory metal-organic complex-loaded hydrogel is a promising multifunctional dressing for the repair and regeneration of cutaneous wounds without additional drugs, exogenous cytokines, or cells. STATEMENT OF SIGNIFICANCE: (1) We reported an effective antioxidant through self-assembly coordination of EGCG and Cerium for managing the inflammatory microenvironment at the wound site, which not only showed high catalytic capacity towards multiple ROS, but also could provide mitochondrial protective effect against oxidative stress damage, reverse the polarization of M1 macrophages and downregulate pro-inflammatory cytokines. EGCG@Ce was further loaded into porous and bactericidal PEG-chitosan (PEG-CS) hydrogel as a versatile wound dressing, which accelerated wound healing and angiogenesis. (2) The applicability of alleviating sustainable inflammation and regulating macrophage polarization through ROS scavenging is a promising strategy for tissue repair and regeneration without additional drugs, cytokines, or cells.


Assuntos
Quitosana , Quitosana/farmacologia , Cicatrização , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/farmacologia , Materiais Biocompatíveis/farmacologia , Bandagens , Hidrogéis/farmacologia , Antioxidantes/farmacologia , Polietilenoglicóis/farmacologia , Antibacterianos/farmacologia , Citocinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA