Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364316

RESUMO

The construction of a multi-component heterostructure for promoting the exciton splitting and charge separation of conjugated polymer semiconductors has attracted increasing attention in view of improving their photocatalytic activity. Here, we integrated Au nanoparticles (NPs) decorated CeO2 (Au-CeO2) with polymeric carbon nitride (PCN) via a modified thermal polymerization method. The combination of the interfacial interaction between PCN and CeO2 via N-O or C-O bonds, with the interior electronic transmission channel built by the decoration of Au NPs at the interface between CeO2 and PCN, endows CeAu-CN with excellent efficiency in the transfer and separation of photo-induced carriers, leading to the enhancement of photochemical activity. The amount-optimized CeAu-CN nanocomposites are capable of producing ca. 80 µmol· H2 per hour under visible light irradiation, which is higher than that of pristine CN, Ce-CN and physical mixed CeAu and PCN systems. In addition, the photocatalytic activity of CeAu-CN remains unchanged for four runs in 4 h. The present work not only provides a sample and feasible strategy to synthesize highly efficient organic polymer composites containing metal-assisted heterojunction photocatalysts, but also opens up a new avenue for the rational design and synthesis of potentially efficient PCN-based materials for efficient hydrogen evolution.

2.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080206

RESUMO

Modulating the transport route of photogenerated carriers on hollow cadmium sulfide without changing its intrinsic structure remains fascinating and challenging. In this work, a series of well-defined heterogeneous hollow structural materials consisting of CdS hollow nanocubes (CdS NCs) and graphitic C3N4 nanoparticles (CN NPs) were strategically designed and fabricated according to an electrostatic interaction approach. It was found that such CN NPs/CdS NCs still retained the hollow structure after CN NP adorning and demonstrated versatile and remarkably boosted photoreduction performance. Specifically, under visible light irradiation (λ ≥ 420 nm), the hydrogenation ratio over 2CN NPs/CdS NCs (the mass ratio of CN NPs to CdS NCs is controlled to be 2%) toward nitrobenzene, p-nitroaniline, p-nitrotoluene, p-nitrophenol, and p-nitrochlorobenzene can be increased to 100%, 99.9%, 83.2%, 93.6%, and 98.2%, respectively. In addition, based on the results of photoelectrochemical performances, the 2CN NPs/CdS NCs reach a 0.46% applied bias photo-to-current efficiency, indicating that the combination with CN NPs can indeed improve the migration and motion behavior of photogenerated carriers, besides ameliorating the photocorrosion and prolonging the lifetime of CdS NCs.

3.
Dalton Trans ; 52(20): 6813-6822, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37133849

RESUMO

Designing frustrated Lewis pair (FLP)-structured photocatalysts is a new challenge in catalysis. In particular, the relationship between the active sites and photocatalytic charge transport mechanism over FLP-structured photocatalysts is still ill-defined. In this study, a novel perylene-3,4,9,10-tetracarboxylic diimide/UiO-66(Ti/Zr)-NH2 (denoted as PDI/TUZr) photocatalyst is successfully constructed using an ammoniation process. The PDI/TUZr heterojunction is equipped with a unique "Zr/Ti SBUs-ligand-PDI" FLP structure and exhibits remarkable catalytic FLP properties. In this "Zr/Ti SBUs-ligand-PDI" structure, the Zr/Ti bimetal centers and PDI serve as Lewis acid and base sites, respectively, and the C-N chemical bond provides a channel for electron transmission, and a bimetallic system facilitates electron transfer from excited ligand to Zr/Ti-SBUs nodes. These superior microstructural designs cooperate to promote substrate activation for photocatalytic antibacterial reactions. Accordingly, 2.2-fold enhancement is achieved in visible photocatalytic antibacterial activity on Staphylococcus aureus for 4%PDI/0.2TUZr composite compared with unadorned UZr. This study provides insights into the formation and carrier transfer behaviors of solid FLP on MOFs and illustrates a rational strategy for the construction of highly efficient photocatalysts.

4.
RSC Adv ; 13(51): 36477-36483, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38099249

RESUMO

The construction of heterojunctions has been used to optimize photocatalyst fuel denitrification. In this work, HKUST-1(Cu) was used as a sacrificial template to synthesize a composite material CuxO (CuO/Cu2O) that retains the original MOF framework for photocatalytic fuel denitrification by calcination at different temperatures. By adjusting the temperature, the content of CuO/Cu2O can be changed to control the performance and structure of CuxO-T effectively. The results show that CuxO-300 has the best photocatalytic performance, and its denitrification rate reaches 81% after 4 hours of visible light (≥420 nm) irradiation. Through the experimental analysis of pyridine's infrared and XPS spectra, we found that calcination produces CuxO-T mixed-valence metal oxide, which can create more exposed Lewis acid sites in the HKUST-1(Cu) framework. This leads to improved pyridine adsorption capabilities. The mixed-valence metal oxide forms a type II semiconductor heterojunction, which accelerates carrier separation and promotes photocatalytic activity for pyridine denitrification.

5.
Dalton Trans ; 52(47): 17785-17791, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37990557

RESUMO

The rapid recombination of charge carriers in semiconductor-based photocatalysts results in a low photocatalytic activity. Co-catalysis is considered a promising strategy to improve the photocatalytic performance of semiconductors. In this study, a bimetallic phosphide was grown by a facile in situ growth method. Loading the cocatalyst (7 wt% NiCoP) leads to activity enhancement by a factor of approximately 27 times in the visible-light-driven hydrogen evolution relative to the pristine Zn0.5Cd0.5S. The photocatalysis shows a high hydrogen evolution rate of 19.5 mmol g-1 h-1, which is much higher than that of the single metal phosphide (Ni2P: 7.0 mmol g-1 h-1; CoxP: 8.1 mmol g-1 h-1) and 7 wt% Pt modified Zn0.5Cd0.5S (0.3 mmol g-1 h-1). Its apparent quantum efficiency reaches 41.6% at 420 nm. Moreover, the photocatalyst exhibits a remarkable photostability for five consecutive cycles of photocatalytic activity measurements with a total reaction time of 15 hours. The excellent photocatalytic activity of the photocatalyst was attributed to the in situ-formed NiCoP cocatalyst, which not only acts as a reactive site but also accelerates the separation of charge carriers.

6.
Inorg Chem ; 51(11): 6245-50, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22591138

RESUMO

Bi(2)WO(6) hollow microspheres with dimension of ca. 1.5 µm were synthesized via a hydrothermal method using polystyrene particles as the template. The as-prepared Bi(2)WO(6) hollow microspheres can be further transformed to double-shell Bi(2)O(3)/Bi(2)WO(6) hollow microspheres. The samples were fully characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, N(2)-sorption Brunauer-Emmett-Teller surface area, UV-vis diffuse-reflectance spectroscopy, and X-ray photoelectron spectroscopy. The as-formed double-shell Bi(2)O(3)/Bi(2)WO(6) hollow microspheres exhibit enhanced photocatalytic activity due to the hollow nature and formation of the p-n junction between p-type Bi(2)O(3) and n-type Bi(2)WO(6). The study provides a general and effective method in the fabrication of composition and dimension-tunable composite hollow microspheres with sound heterojunctions that may show a variety of applications.


Assuntos
Bismuto/química , Microesferas , Óxidos/química , Compostos de Tungstênio/química , Catálise , Luz , Espectroscopia Fotoeletrônica , Espectrofotometria Ultravioleta , Difração de Raios X
7.
Angew Chem Int Ed Engl ; 51(14): 3364-7, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22359408

RESUMO

Let your light shine: the photocatalytic reduction of carbon dioxide to the formate anion under visible light irradiation is for the first time realized over a photoactive Ti-containing metal-organic framework, NH(2)-MIL-125(Ti), which is fabricated by a facile substitution of ligands in the UV-responsive MIL-125(Ti) material.

8.
J Hazard Mater ; 427: 128132, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35038661

RESUMO

Mercury is a highly toxic heavy metal pollutant. It is of great significance to develop cost-effective mercury pollution control technologies of coal-fired flue gas. Among various mercury from flue gas removal methods, the application of existing air pollution control devices (APCDs) to remove mercury from flue gas is one of the most valuable methods because it doesn't need to install additional mercury removal equipment, reducing the cost of mercury removal. This review summarizes the recent progress of mercury from flue gas removal by APCDs (e.g., SCR denitration device, WFGD system and dust removal device). SCR denitration device can achieve partial removal of mercury in flue gas through combined with WFGD system, but easy inactivation and poor sulfur/water/heavy metals resistance of SCR catalyzers are still the main problems. WFGD systems can remove most of Hg2+ (80%-95%), but have low treatment ability for Hg0. Various oxidants can effectively oxidize Hg0 into Hg2+. However, traditional oxidants have high prices and secondary pollution due to the formation of by-products. Fabric filters (FFs), electrostatic precipitators (ESPs) and hybrid fabric filters (HFs) can all control the emission of mercury in the flue gas to a certain extent, especially can effectively remove most of HgP and part of Hg2+, but has low removal capacity for Hg0. Compared with ESP, FF has better capture efficiency for Hg2+ and Hg0, and a combination of ESP and FF, that is HF, can effectively improve the mercury removal capacity.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Mercúrio , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Carvão Mineral/análise , Mercúrio/análise , Centrais Elétricas
9.
Dalton Trans ; 50(7): 2596-2605, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33522547

RESUMO

In this work, a novel step-scheme (S-scheme) Bi2MoO6/CdS heterojunction (HJ) photocatalyst (PC) was successfully prepared by a two-step solvothermal method for the first time. One-dimensional CdS nanorods were prepared by a simple solvothermal method as a synthesis template. Then, a Bi2MoO6 precursor was added to obtain a series of Bi2MoO6/CdS HJ composite catalytic materials with different morphologies. The photocatalytic performance of the catalyst was investigated by simulating fuel denitration as a probe reaction under visible light excitation (>420 nm). When compared with pure Bi2MoO6 and CdS, the 0.65-Bi2MoO6/CdS composite shows the highest photocatalytic activity for pyridine degradation. Degradation of pyridine reached 81% after 240 min of visible light excitation. The degradation rate of 0.65-Bi2MoO6/CdS reached 0.4471 h-1, which was 1.8 and 3.2 times higher than that of CdS (0.2493 h-1) and Bi2MoO6 (0.1427 h-1), respectively. Combined with a series of characterisation results, the improvement in pyridine degradation activity was mainly attributed to (1) the S-scheme HJ structure between Bi2MoO6 and CdS, which greatly promoted the separation of photogenerated electrons and holes while retaining its strong redox ability, (2) the large specific surface area, which provided abundant active sites and efficient adsorption performance and catalytic performance, and (3) the special morphology, which induced multiple reflections of light, thereby improving absorption and utilisation of light. Moreover, after four cycles of pyridine denitrification, the samples still exhibited high activity, indicating good stability and recyclability of the composite catalyst. These findings provide a basis for the development of composite PCs for efficient fuel denitration under visible light irradiation.

10.
RSC Adv ; 11(38): 23288-23300, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35479778

RESUMO

Construction of step-scheme (S-scheme) heterojunction (HJ) structures is an excellent strategy to achieve efficient photogenerated carrier separation and retain strong redox ability. Recently, the development of efficient S-scheme HJ photocatalysts for the degradation of environmental organic pollutants has attracted considerable attention. In this work, a novel S-scheme CdS/Pt/Bi2MoO6 (CPB) photocatalyst was prepared for the first time by sonochemical and solvothermal methods. By anchoring Pt nanoparticles (NPs) at the interface between CdS nanorods (NRs) and Bi2MoO6 nanosheets (NSs), the migration of photogenerated electron-hole pairs along the stepped path was achieved. The ternary CPB samples were characterized by various analytical techniques, and their photocatalytic performance was investigated by conducting simulated fuel denitrification under visible-light irradiation. It was found that the CPB-4 composites exhibited the highest pyridine degradation activity, which reached 94% after 4 h of visible-light irradiation. The superior photocatalytic performance of the CPB-4 composite could be attributed to the synergistic effect of the Pt NPs and Bi2MoO6 NRs on the photocatalytic degradation as well as to the introduction of Pt and Bi2MoO6, which led to an excellent response and large specific surface area of the CPB-4 composite. Lastly, the bridging role of the Pt NPs introduced into the S-scheme system was also notable, as it effectively improved the separation and transfer of the CdS/Bi2MoO6 interfaces for the photogenerated electron-hole pairs while retaining strong redox ability.

11.
Sci Rep ; 7(1): 7858, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798353

RESUMO

With increasingly stringent environmental regulations, the removal of nitrogen-containing compounds (NCCs) from gasoline fuel has become a more and more important research subject. In this work, we have successfully synthesized TiO2/α-Fe2O3 heterogeneous photocatalysts with different mass ratios of TiO2 vs. α-Fe2O3. Taking photocatalytic denitrification of typical alkali NCCs, pyridine, in gasoline fuel under visible light irradiation (λ ≥ 420 nm) as the model reaction, the TiO2/α-Fe2O3 hybrids have exhibited enhanced photocatalytic activity compared with pure TiO2 and α-Fe2O3, giving a pyridine removal ratio of ∼100% after irradiation for 240 min. The improved photocatalytic performance can be attributed to the integrative effect of the enhanced light absorption intensity and more efficient separation of photogenerated electron-hole pairs. Importantly, this type of heterogeneous photocatalysts can be easily separate in the reaction medium by an external magnetic field that is very important for industrial purpose. In addition, major reaction intermediates have been identified by the liquid chromatograph-mass spectrometer (HPLC-MS) and a tentative photocatalytic denitrification mechanism has been proposed.

12.
ACS Appl Mater Interfaces ; 4(4): 2273-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22497481

RESUMO

Different pathways for the degradation of rhodamine (RhB) as well as different activity order for the degradation of RhB and methyl orange (MO) were observed over hexagonal ZnIn(2)S(4) microspheres and cubic ZnIn(2)S(4) nanoparticles. A detailed study of the physicochemical and surface properties of these two ZnIn(2)S(4) polymorphs has been carried out to elucidate these phenomena. The results reveal that hexagonal ZnIn(2)S(4) microspheres are composed of nanolamella petals growing in the ab plane, i.e., the negative (0001) S plane. This negative (0001) S plane not only is favorable for the adsorption of the cationic dye RhB via -N(Et)(2) groups but also can accumulate the photogenerated holes. These make the hole-directed photocatalytic de-ethylation of RhB more expedient over hexagonal ZnIn(2)S(4) microspheres. This negative (0001) S plane of hexagonal ZnIn(2)S(4) microspheres also shows promoting effect for the degradation of cationic dye like MB, but not for the degradation of anionic dye like MO. Our result provides some new insights in how the surface facet can take effect on influencing the performance of a photocatalyst and why different polymorphs can exhibit different photocatalytic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA