Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35957004

RESUMO

The surface plasmonic resonance, surface wettability, and related mechanical nanohardness and of face-centered-cubic (fcc) chromium nitride (CrN) films have been successfully manipulated via the simple method of tuning nitrogen-containing gas with different nitrogen-to-argon ratios, varying from 3.5 (N35), to 4.0 (N40), to 4.5 (N45), which is directly proportional to argon. All of the obtained CrN films showed that the surface wettability was due to hydrophilicity. All of the characteristics were mainly confirmed and explained by using X-ray diffraction (XRD) patterns, including plan-view and cross-section SEM images, with calculations of the average grain size performed via histograms accompanied by different preferred grain orientations. In the present work, not only the surface plasmonic resonance, but also the surface wettability and the related mechanical nanohardness of CrN films were found to be tunable via a simple method of introducing adjustable nitrogen-reactive-containing gas during the deposition process, while the authors suggest that the crystal orientation transition from the (111) to the (200) crystalline plane changed significantly with the nitrogen-containing gas. So the transition of the preferred orientation of CrN's cubic close-packed from (111) to (200) varied at this composite, caused and found by the nitrogen-containing gas, which can be tuned by the nitrogen-to-argon ratio. The surface plasmonic resonance and photoluminescence quenching effects were coupled photon and electron oscillations, which could be observed, and which existed at the interface between the CrN and Au metals in the designed heterostructures.

2.
Materials (Basel) ; 10(2)2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28772547

RESUMO

304 stainless steels (SS) were considered as the materials for a dry storage canister. In this study, ER (Electrode Rod) 308L was utilized as the filler metal for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. The electron backscatter diffraction (EBSD) map was used to identify the inherent microstructures in distinct specimens. U-bend and weight-loss tests were conducted by testing the 304L substrates and welds in a salt spray containing 5 wt % NaCl at 80 °C to evaluate their susceptibility to stress corrosion cracking (SCC). Generally, the weight loss of the ER 308L deposit was higher than that of the 304L substrate in a salt spray in the same sample-prepared condition. The dissolution of the skeletal structure in the fusion zone (FZ) was responsible for a greater weight loss of the 308L deposit, especially for the cold-rolled and sensitized specimen. Cold rolling was detrimental and sensitization after cold rolling was very harmful to the SCC resistance of the 304L substrate and 308L deposit. Overall, the SCC susceptibility of each specimen was correlated with its weight loss in each group.

3.
Materials (Basel) ; 10(2)2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28772500

RESUMO

The increased thermal efficiency of fossil power plants calls for the development of advanced creep-resistant alloy steels like T92. In this study, microstructures found in the heat-affected zone (HAZ) of a T92 steel weld were simulated to evaluate their creep-rupture-life at elevated temperatures. An infrared heating system was used to heat the samples to 860 °C (around AC1), 900 °C (slightly below AC3), and 940 °C (moderately above AC3) for one minute, before cooling to room temperature. The simulated specimens were then subjected to a conventional post-weld heat treatment (PWHT) at 750 °C for two hours, where both the 900 °C and 940 °C simulated specimens had fine grain sizes. In the as-treated condition, the 900 °C simulated specimen consisted of fine lath martensite, ferrite subgrains, and undissolved carbides, while residual carbides and fresh martensite were found in the 940 °C simulated specimen. The results of short-term creep tests indicated that the creep resistance of the 900 °C and 940 °C simulated specimens was poorer than that of the 860 °C simulated specimens and the base metal. Moreover, simulated T92 steel samples had higher creep strength than the T91 counterpart specimens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA