Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Small ; 20(27): e2310012, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38368250

RESUMO

Developing efficient nonprecious bifunctional electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) in the same electrolyte with a low overpotential and large current density presents an appealing yet challenging goal for large-scale water electrolysis. Herein, a unique 3D self-branched hierarchical nanostructure composed of ultra-small cobalt phosphide (CoP) nanoparticles embedded into N, P-codoped carbon nanotubes knitted hollow nanowall arrays (CoPʘNPCNTs HNWAs) on carbon textiles (CTs) through a carbonization-phosphatization process is presented. Benefiting from the uniform protrusion distributions of CoP nanoparticles, the optimum CoPʘNPCNTs HNWAs composites with high abundant porosity exhibit superior electrocatalytic activity and excellent stability for OER in alkaline conditions, as well as for HER in both acidic and alkaline electrolytes, even under large current densities. Furthermore, the assembled CoPʘNPCNTs/CTs||CoPʘNPCNTs/CTs electrolyzer demonstrates exceptional performance, requiring an ultralow cell voltage of 1.50 V to deliver the current density of 10 mA cm-2 for overall water splitting (OWS) with favorable stability, even achieving a large current density of 200 mA cm-2 at a low cell voltage of 1.78 V. Density functional theory (DFT) calculation further reveals that all the C atoms between N and P atoms in CoPʘNPCNTs/CTs act as the most efficient active sites, significantly enhancing the electrocatalytic properties. This strategy, utilizing 2D MOF arrays as a structural and compositional material to create multifunctional composites/hybrids, opens new avenues for the exploration of highly efficient and robust non-noble-metal catalysts for energy-conversion reactions.

2.
Small ; 19(41): e2302461, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37292002

RESUMO

The sluggish redox kinetics and shuttle effect seriously impede the large application of room-temperature sodium-sulfur (RT Na-S) batteries. Designing effective catalysts into cathode material is a promising approach to overcome the above issues. However, considering the multistep and multiphase transformations of sulfur redox process, it is impractical to achieve the effective catalysis of the entire S8 →Na2 Sx →Na2 S conversion through applying a single catalyst. Herein, this work fabricates a nitrogen-doped core-shell carbon nanosphere integrated with two different catalysts (ZnS-NC@Ni-N4 ), where isolated Ni-N4 sites and ZnS nanocrystals are distributed in the shell and core, respectively. ZnS nanocrystals ensure the rapid reduction of S8 into Na2 Sx (4 < x ≤ 8), while Ni-N4 sites realize the efficient conversion of Na2 Sx into Na2 S, bridged by the diffusion of Na2 Sx from the core to shell. Besides, Ni-N4 sites on the shell can also induce an inorganic-rich cathode-electrolyte interface (CEI) on ZnS-NC@Ni-N4 to further inhibit the shuttle effect. As a result, ZnS-NC@Ni-N4 /S cathode exhibits an excellent rate-performance (650 mAh g-1 at 5 A g-1 ) and ultralong cycling stability for 2000 cycles with a low capacity-decay rate of 0.011% per cycle. This work will guide the rational design of multicatalysts for high-performance RT Na-S batteries.

3.
Small ; 18(15): e2106716, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35218141

RESUMO

Herein, a type of hypervalent iodine compound-iodosobenzene (PhIO)-is proposed to regulate the LiPSs electrochemistry and enhance the performance of Li-S battery. PhIO owns the practical advantages of low-cost, commercial availability, environmental friendliness and chemical stability. The lone pair electrons of oxygen atoms in PhIO play a critical role in forming a strong Lewis acid-base interaction with terminal Li in LiPSs. Moreover, the commercial PhIO can be easily converted to nanoparticles (≈20 nm) and uniformly loaded on a carbon nanotube (CNT) scaffold, ensuring sufficient chemisorption for LiPSs. The integrated functional PhIO@CNT interlayer affords a LiPSs-concentrated shield that not only strongly obstructs the LiPSs penetration but also significantly enhances the electrolyte wettability and Li+ conduction. The PhIO@CNT interlayer also serves as a "vice current collector" to accommodate various LiPSs and render smooth LiPSs transformation, which suppresses insulating Li2 S2 /Li2 S layer formation and facilitates Li+ diffusion. The Li-S battery based on PhIO@CNT interlayer (6 wt% PhIO) exhibits stable cycling over 1000 cycles (0.033% capacity decay per cycle) and excellent rate performance (686.6 mAh g-1 at 3 C). This work demonstrates the great potential of PhIO in regulating LiPSs and provides a new avenue towards the low-cost and sustainable application of Li-S batteries.

4.
Small ; 17(34): e2007442, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34278712

RESUMO

Detrimental lithium polysulfide (LiPS) shuttle effects and sluggish electrochemical conversion kinetics in lithium-sulfur (Li-S) batteries severely hinder their practical application. Separator modification has been extensively investigated as an effective strategy to address above issues. Nevertheless, in the case of functional separators, how to effectively block the LiPSs from diffusion while enabling the rapid Li ion transport remains a challenge. Herein, by using an "oxidation-etching" method, MXene membranes are presented with controllable in-plane pores as interlayer to regulate Li ion transportation and LiPS immobilization. Porous MXene membranes with optimized pore density and size can simultaneously anchor LiPS and ensure fast Li ion diffusion. Consequently, even with pure sulfur cathode, the improved Li-S batteries deliver excellent rate performance up to 2 C with a reversible capacity of 677.6 mAh g-1 and long-term cyclability over 500 cycles at 1 C with a low capacity decay of 0.07% per cycle. This work sheds new insights into the design of high-performance interlayers with manipulated nanochannels and tailored surface chemistry to regulate LiPSs trapping and Li ion diffusion in Li-S batteries.

5.
Small ; 15(51): e1906132, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31756047

RESUMO

The polysulfide shuttle effect and sluggish reaction kinetics hamper the practical applications of lithium-sulfur (Li-S) batteries. Incorporating a functional interlayer to trapping and binding polysulfides has been found effective to block polysulfide migration. Furthermore, surface chemistry at soluble polysulfides/electrolyte interface is a crucial step for Li-S battery in which stable cycling depends on adsorption and reutilization of blocked polysulfides in the electrolyte. A multifunctional catalytic interface composed of niobium nitride/N-doped graphene (NbN/NG) along the soluble polysulfides/electrolyte is designed and constructed to regulate corresponding interface chemical reaction, which can afford long-range electron transfer surfaces, numerous strong chemisorption, and catalytic sites in a working lithium-sulfur battery. Both experimental and theoretical calculation results suggest that a new catalytic interface enabled by metal-like NbN with superb electrocatalysis anchored on NG is highly effective in regulating the blocked polysulfide redox reaction and tailoring the Li2 S nucleation-growth-decomposition process. Therefore, the Li-S batteries with multifunctional NbN/NG barrier exhibit excellent rate performance (621.2 mAh g-1 at 3 C) and high stable cycling life (81.5% capacity retention after 400 cycles). This work provides new insights to promote Li-S batteries via multifunctional catalytic interface engineering.

6.
Nanotechnology ; 30(40): 405601, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31181543

RESUMO

Developing an environmentally friendly and low-cost approach to improve electrocatalytic activity for hydrogen evolution reaction (HER) has drawn wide attention due to its significant value and challenge. NbS2-based materials exhibit high performance catalytic activity in electrochemical area, but its poor stability and synthetic difficulty limits its development and application. This work reports on the enhancement of HER performance through the utilization of conductive polymer polypyrrole (Ppy) on NbS2 nanowires as electrocatalysts, which can be easily prepared. The Ppy coated NbS2 nanowires obtain excellent catalytic activity for HER with low onset potential (-56 mV) and much lower overpotential (-219 mV) at a current of -10 mA cm-2 compared with bare NbS2 nanowires.

7.
Small ; 14(28): e1800898, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29882239

RESUMO

In this contribution, a novel sulfate-ion-controlled synthesis is developed to fabricate freestanding nickel hydroxide nanoarrays on Ni substrate. As an inorganic morphology-controlled agent, SO42- ions play a critical role in controlling the crystal growth and the nanoarray morphologies, by modulating the growth rate of adsorbed crystal facets or inserting into the metal hydroxide interlayers. By controlling the SO42- concentration, the nanostructured arrays are tailored from one-dimensional (1D) Ni(SO4 )0.3 (OH)1.4 nanobelt arrays to hierarchical ß-Ni(OH)2 nanosheet arrays. With further graphene oxide modification and postheat treatment, the obtained NiO/graphene hybrid nanoarrays show great potential for high-performance sodium-ion batteries, which exhibit a cyclability of 380 mAh g-1 after undergoing 100 cycles at 0.5 C and reach a rate capability of 335 mA h g-1 at 10 C.

8.
Chem Soc Rev ; 45(12): 3479-563, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27255561

RESUMO

Over the last decade, significant effort has been devoted to the applications of hierarchically structured porous materials owing to their outstanding properties such as high surface area, excellent accessibility to active sites, and enhanced mass transport and diffusion. The hierarchy of porosity, structural, morphological and component levels in these materials is key for their high performance in all kinds of applications. The introduction of hierarchical porosity into materials has led to a significant improvement in the performance of materials. Herein, recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed. Their potential future applications are also highlighted. We particularly dwell on the relationship between hierarchically porous structures and properties, with examples of each type of hierarchically structured porous material according to its chemical composition and physical characteristics. The present review aims to open up a new avenue to guide the readers to quickly obtain in-depth knowledge of applications of hierarchically porous materials and to have a good idea about selecting and designing suitable hierarchically porous materials for a specific application. In addition to focusing on the applications of hierarchically porous materials, this comprehensive review could stimulate researchers to synthesize new advanced hierarchically porous solids.


Assuntos
Materiais Biocompatíveis , Fontes Geradoras de Energia , Processos Fotoquímicos , Adsorção , Materiais Biocompatíveis/química , Catálise , Porosidade
9.
J Colloid Interface Sci ; 675: 806-814, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39002231

RESUMO

Metal-organic compounds have attracted significant attention for lithium-ion battery (LIB) anodes. However, their practical application is severely hindered by the poor structural stability and sluggish Li+ reaction kinetics. Herein, we proposed a new type of metal-organic compound, metal alkoxides, for high-performance LIBs. A series of metal-alkoxide/graphene composites with different transition metal centers and alkoxide anions are prepared to investigate the structural stability, Li-storage ability, and Li+ diffusion kinetics. The results reveal that the metal centers and alkoxide anions have significant influence on the structural stability, molar mass, and electronic structures, which are highly related to the Li-storage performance. Among them, Co-EG/rGO (EG represents the ethylene glycol anion) delivers the best performance involving high specific capacity (975 mAh g-1 at 0.2 A g-1), excellent rate capability (400.8 mAh g-1 at 10 A g-1), and stable cycling performance (86.8 % capacity retention after 600 cycles) due to its stable structure, smaller molar mass, and favorable electronic structure. Moreover, the Li-storage mechanism and solid electrolyte interphase (SEI) evolution of the Co-EG/rGO electrode are studied in detail through multiple ex-situ/in-situ characterizations. This work provides a new type of metal alkoxide anode material for high-rate and long-life LIBs toward practical energy applications.

10.
Adv Mater ; 36(2): e2305957, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37838943

RESUMO

Transition-metal sulfides have been regarded as perspective anode candidates for high-energy Na-ion batteries. Their application, however, is precluded severely by either low charge storage or huge volumetric change along with sluggish reaction kinetics. Herein, an effective synergetic Sn incorporation-Zn substitution strategy is proposed based on copper-based sulfides. First, Na-ion storage capability of copper sulfide is significantly improved via incorporating an alloy-based Sn element. However, this process is accompanied by sacrifice of structural stability due to the high Na-ion uptake. Subsequently, to maintain the high Na-ion storage capacity, and concurrently improve cycling and rate capabilities, a Zn substitution strategy (taking partial Sn sites) is carried out, which could significantly promote Na-ion diffusion/reaction kinetics and relieve mechanical strain-stress within the crystal framework. The synergetic Sn incorporation and Zn substitution endow copper-based sulfides with high specific capacity (≈560 mAh g-1 at 0.5 A g-1 ), ultrastable cyclability (80 k cycles with ≈100% capacity retention), superior rate capability up to 200 A g-1 , and ultrafast charging feature (≈4 s per charging with ≈190 mAh g-1 input). This work provides in-depth insights for developing superior anode materials via synergetic multi-cation incorporation/substitution, aiming at solving their intrinsic issues of either low specific capacity or poor cyclability.

11.
ACS Nano ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334266

RESUMO

Sodium-ion batteries (SIBs) are a promising electrochemical energy storage system; however, their practical application is hindered by the sluggish kinetics and interfacial instability of anode-active materials. Here, to circumvent these issues, we proposed the multiscale interface engineering of S-doped TiO2 electrodes with minor sulfur/carbon inlaying (S/C@sTiO2), where the electrode-electrolyte interface (SEI) and electrode-current collector interface (ECI) are tuned to improve the Na-storage performance. It is found that the S dopant greatly promotes the Na+ diffusion kinetics. Moreover, the ether electrolyte generates much less NaF in the cycled electrode, but relatively richer NaF in the SEI in comparison to fluoroethylene carbonate-contained ester electrolyte, leading to a thin (9 nm), stable, and kinetically favorable SEI film. More importantly, the minor sodium polysulfide intermediates chemically interact with the Cu current collector to form a Cu2S interface between the electrode and the Cu foil. The conductive tree root-like Cu2S ECI serves not only as active sites to boost the specific capacity but also as a 3D "second current collector" to reinforce the electrode and improve the Na+ reaction kinetics. The synergy of S-doping and optimized SEI and ECI realizes large specific capacity (464.4 mAh g-1 at 0.1 A g-1), ultrahigh rate capability (305.8 mAh g-1 at 50 A g-1), and ultrastable cycling performance (91.5% capacity retention after 3000 cycles at 5 A g-1). To the best of our knowledge, the overall SIB performances of S/C@sTiO2 are the best among all of the TiO2-based electrodes.

12.
Nanomicro Lett ; 16(1): 161, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526682

RESUMO

With the merits of the high energy density of batteries and power density of supercapacitors, the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery and moderate energy storage are required. However, the narrow electrochemical window of aqueous electrolytes induces severe side reactions on the Zn metal anode and shortens its lifespan. It also limits the operation voltage and energy density of the Zn-ion hybrid supercapacitors. Using 'water in salt' electrolytes can effectively broaden their electrochemical windows, but this is at the expense of high cost, low ionic conductivity, and narrow temperature compatibility, compromising the electrochemical performance of the Zn-ion hybrid supercapacitors. Thus, designing a new electrolyte to balance these factors towards high-performance Zn-ion hybrid supercapacitors is urgent and necessary. We developed a dilute water/acetonitrile electrolyte (0.5 m Zn(CF3SO3)2 + 1 m LiTFSI-H2O/AN) for Zn-ion hybrid supercapacitors, which simultaneously exhibited expanded electrochemical window, decent ionic conductivity, and broad temperature compatibility. In this electrolyte, the hydration shells and hydrogen bonds are significantly modulated by the acetonitrile and TFSI- anions. As a result, a Zn-ion hybrid supercapacitor with such an electrolyte demonstrates a high operating voltage up to 2.2 V and long lifespan beyond 120,000 cycles.

13.
Adv Mater ; 36(25): e2314271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569202

RESUMO

Transition metal chalcogenides (TMCs) emerge as promising anode materials for sodium-ion batteries (SIBs), heralding a new era of energy storage solutions. Despite their potential, the mechanisms underlying their performance enhancement and susceptibility to failure in ether-based electrolytes remain elusive. This study delves into these aspects, employing CoS2 electrodes as a case in point to elucidate the phenomena. The investigation reveals that CoS2 undergoes a unique irreversible and progressive solid-liquid-solid phase transition from its native state to sodium polysulfides (NaPSs), and ultimately to a Cu1.8S/Co composite, accompanied by a gradual morphological transformation from microspheres to a stable 3D porous architecture. This reconstructed 3D porous structure is pivotal for its exceptional Na+ diffusion kinetics and resilience to cycling-induced stress, being the main reason for ultrastable cycling and ultrahigh rate capability. Nonetheless, the CoS2 electrode suffers from an inevitable cycle life termination due to the microshort-circuit induced by Na metal corrosion and separator degradation. Through a comparative analysis of various TMCs, a predictive framework linking electrode longevity is established to electrode potential and Gibbs free energy. Finally, the cell failure issue is significantly mitigated at a material level (graphene encapsulation) and cell level (polypropylene membrane incorporation) by alleviating the NaPSs shuttling and microshort-circuit.

14.
ACS Appl Mater Interfaces ; 15(22): 26650-26659, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37226049

RESUMO

The rational design of advanced catalysts for sodium-sulfur (Na-S) batteries is important but remains challenging due to the limited understanding of sulfur catalytic mechanisms. Here, we propose an efficient sulfur host consisting of atomic low-coordinated Zn-N2 sites dispersed on N-rich microporous graphene (Zn-N2@NG), which realizes state-of-the-art sodium-storage performance with a high sulfur content of 66 wt %, high-rate capability (467 mA h g-1 at 5 A g-1), and long cycling stability for 6500 cycles with an ultralow capacity decay rate of 0.0062% per cycle. Ex situ methods combined with theoretical calculations demonstrate the superior bidirectional catalysis of Zn-N2 sites on sulfur conversion (S8 ↔ Na2S). Furthermore, in situ transmission electron microscopy was applied to visualize the microscopic S redox evolution under the catalysis of Zn-N2 sites without liquid electrolytes. During the sodiation process, both surface S nanoparticles and S molecules in the mircopores of Zn-N2@NG quickly convert into Na2S nanograins. During the following desodiation process, only a small part of the above Na2S can be oxidized into Na2Sx. These results reveal that, without liquid electrolytes, Na2S is difficult to be decomposed even with the assistance of Zn-N2 sites. This conclusion emphasizes the critical role of liquid electrolytes in the catalytic oxidation of Na2S, which was usually ignored by previous works.

15.
ACS Nano ; 16(1): 453-461, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34978811

RESUMO

The cycle stability and voltage retention of a Na2Mn[Fe(CN)6] (NMF) cathode for sodium-ion batteries (SIBs) has been impeded by the huge distortion from NaMnII[FeIII(CN)6] to MnIII[FeIII(CN)6] caused by the Jahn-Teller (JT) effect of Mn3+. Herein, we propose a topotactic epitaxy process to generate K2Mn[Fe(CN)6] (KMF) submicron octahedra and assemble them into octahedral superstructures (OSs) by tuning the kinetics of topotactic transformation. As the SIB cathode, the self-assembly behavior of KMF improves the structural stability and decreases the contact area with the electrolyte, thereby inhibiting the transition metal in the KMF cathode from dissolving in the electrolyte. More importantly, the KMF partly transforms into NMF with Na+ de/intercalation, and the existing KMF acts as a stabilizer to disrupt the long-range JT order of NMF, thereby suppressing the overall JT distortion. As a result, the electrochemical performances of KMF cathodes outperform NMF with a highly reversible phase transition and outstanding cycling performance, and 80% capacity retention after 1500/1300 cycles at 0.1/0.5 A g-1. This work not only promotes creative synthetic methodologies but also promotes to explore the relationship between Jahn-Teller structural deformation and cycle stability.

16.
Adv Mater ; 34(7): e2108621, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34850465

RESUMO

Defect-rich carbon materials possess high gravimetric potassium storage capability due to the abundance of active sites, but their cyclic stability is limited because of the low reversibility of undesirable defects and the deteriorative conductivity. Herein, in situ defect-selectivity and order-in-disorder synergetic engineering in carbon via a self-template strategy is reported to boost the K+ -storage capacity, rate capability and cyclic stability simultaneously. The defect-sites are selectively tuned to realize abundant reversible carbon-vacancies with the sacrifice of poorly reversible heteroatom-defects through the persistent gas release during pyrolysis. Meanwhile, nanobubbles generated during the pyrolysis serve as self-templates to induce the surface atom rearrangement, thus in situ embedding nanographitic networks in the defective domains without serious phase separation, which greatly enhances the intrinsic conductivity. The synergetic structure ensures high concentration of reversible carbon-vacancies and fast charge-transfer kinetics simultaneously, leading to high reversible capacity (425 mAh g-1 at 0.05 A g-1 ), high-rate (237.4 mAh g-1 at 1 A g-1 ), and superior cyclic stability (90.4% capacity retention from cycle 10 to 400 at 0.1 A g-1 ). This work provides a rational and facile strategy to realize the tradeoff between defect-sites and intrinsic conductivity, and gives deep insights into the mechanism of reversible potassium storage.

17.
J Colloid Interface Sci ; 611: 317-326, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34954607

RESUMO

Na metal anode has attracted increasing attentions as the anode of sodium ion batteries (SIBs) due to its high theoretical capacity, low redox potential and high abundance. However, the formation of uncontrollable Na dendrite during repeated plating/stripping cycles hinders its further development and application. Herein, a sodiophilic Na metal anode host is developed by sputtering gold nanoparticles (Au NPs) into interconnected carbon nanotube modified carbon cloth (CNT/CC) to form a Au-CNT/CC architecture. Sodiophilic Au NPs effectively guide the Na metal uniform deposition and three-dimensional (3D) microporous structure offers a large surface area for nucleation and reducing the current densities. The regulated uniform Na metal deposition mechanism is investigated by the in-situ optical microscopy and simulation analysis. As a result, Au-CNT/CC electrode exhibits a low nucleation overpotential (2.2 mV) and stable cycle performance for 1600 h at 1 mA cm-2 with 2 mAh cm-2. Moreover, it even exhibits a long cycle stability for more than 800 h at 5 mA cm-2 with 2 mAh cm-2. To explore its application, a full cell coupled with a sodium vanadium phosphate coated with carbon layer (NVP@C) cathode is assembled and delivers an average discharge capacity of 80.6 mAh g-1 and coulombic efficiency of 99.6% for 400 cycles at 100 mAh g-1. Furthermore, a flexible pouch cell with Na@Au-CNT/CC as the anode is fabricated and demonstrated good flexibility and future application of wearable electronics.

18.
J Colloid Interface Sci ; 607(Pt 2): 1876-1887, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34695737

RESUMO

The design and construction of bifunctional electrocatalysts with high activity and durability is essential for overall water splitting. Herein, a unique 3D hierarchical NiMo3S4 nanoflowers with abundant defects and reactive sites were grown directly on carbon textiles (NiMo3S4/CTs) using a facile hydrothermal synthesis method. The defect-rich NiMo3S4 nanoflakes, prepared by doping Ni2+ in the lattice of Mo-S, displays extended d-spacing of (002) crystal plane, resulting in the electrocatalytic activity of hydrogen evolution and oxygen evolution reaction (HER and OER) was improved under alkaline conditions. The self-supported NiMo3S4/CTs electrode delivers a small overpotential of 149.5 mV for HER and 126.2 mV for OER at 10 mA cm-2, respectively. Based on detailed structure analysis and density functional theory (DFT) calculations, the excellent HER and OER activities can be attributed to the unique structure of the nanoflowers, where the metallic characteristics for Ni-doped Mo-S lead to the enhancement of intrinsic conductivity and the rich abundance of Ni3+ active sites. As a result, the NiMo3S4/CTs as efficient bifunctional electrocatalysts for overall water-splitting was performed in alkaline electrolyte, where the system required only 1.55, 1.66 and 1.76 V to deliver current densities of 10, 50 and 100 mA cm-2, respectively. This study provides a new method for improving the electrocatalysis properties of transition metal sulfides by metal-ion doping to generate more active defect sites, thus promoting the development of non-noble-metal electrocatalysts for overall water splitting.

19.
Sci Adv ; 8(51): eadd6596, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542707

RESUMO

Advancing the lithium-ion battery technology requires the understanding of electrochemical processes in electrode materials with high resolution, accuracy, and sensitivity. However, most techniques today are limited by their inability to separate the complex signals from slurry-coated composite electrodes. Here, we use a three-dimensional "Swiss-roll" microtubular electrode that is incorporated into a micrometer-sized lithium battery. This on-chip platform combines various in situ characterization techniques and precisely probes the intrinsic electrochemical properties of each active material due to the removal of unnecessary binders and additives. As an example, it helps elucidate the critical role of Fe substitution in a conversion-type NiO electrode by monitoring the evolution of Fe2O3 and solid electrolyte interphase layer. The markedly enhanced electrode performances are therefore explained. Our approach exposes a hitherto unexplored route to tracking the phase, morphology, and electrochemical evolution of electrodes in real time, allowing us to reveal information that is not accessible with bulk-level characterization techniques.

20.
J Colloid Interface Sci ; 594: 531-539, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33774409

RESUMO

Herein we develop a novel and effective alkoxide hydrolysis approach to in-situ construct the trimanganese tetraoxide (Mn3O4)/graphene nanostructured composite as high-performance anode material for lithium-ion batteries (LIBs). This is the first report on the synthesis of Mn3O4/graphene composite via a facile hydrolysis of the manganese alkoxide (Mn-alkoxide)/graphene precursor. Before hydrolysis, two dimensional (2D) Mn-alkoxide nanoplates are closely adhered to 2D graphene nanosheets via Mn-O chemical bonding. After hydrolysis, the Mn-alkoxide in-situ converts to Mn3O4, while the Mn-O bond is preserved. This leads to a robust Mn3O4/graphene hybrid architecture with 15 nm Mn3O4 nanocrystals homogeneously anchoring on graphene nanosheets. This not only prevents the Mn3O4 nanocrystals agglomeration but also inversely mitigates the graphene nanosheets restacking. Moreover, the flexible and conductive graphene nanosheets can accommodate the volume change. This maintains the structural and electrical integrity of the Mn3O4/graphene electrode during the cycling process. As a result, the Mn3O4/graphene composite displays superior lithium storage performance with high reversible capacity (741 mAh g-1 at 100 mA g-1), excellent rate capability (403 mAh g-1 at 1000 mA g-1) and long cycle life (527 mAg g-1 after 300 cycles at 500 mA g-1). The electrochemical performance highlights the importance of rational design nanocrystals anchoring on graphene nanosheets for high-performance LIBs application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA